Лабораторная работа №2 теория

Что такое короткое замыкание?

Короткое замыкание — это не предусмотренное нормальными условиями эксплуатации замыкание между фазами или между фазами и землей. В системах с изолированной нейтралью замыкание одной фазы на землю называется простым.

В местах замыкания часто образуется электрическая дуга, сопротивление которой имеет нелинейный характер. Учет влияния дуги на ток КЗ представляет собой сложную задачу и в настоящем курсе не рассматриваются. Учет дуги производится в сетях до $1000\ B$.

Кроме сопротивления дуги в месте КЗ возникает переходное сопротивление, вызываемое загрязнением, наличием остатков изоляции, окислов и т.п. В случае, когда переходное сопротивление и сопротивление дуги малы, ими пренебрегают. Такое замыкание называют металлическим.

Процесс трехфазного металлического короткого замыкания рассмотрим в простейшей электрической системе (рис. 2.1) [2,5]. Пусть питание системы осуществляется от источника бесконечной мощности с сопротивлением равным нулю.

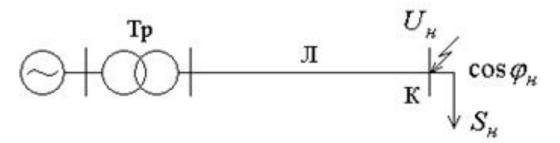


Рис.2.1 – Исследуемая электрическая система

На рис. 2.2 приведена схема замещения рассматриваемой системы. Параметры схемы замещения для разных вариантов, приведенные к номинальному напряжению в месте КЗ –Uн, сведены в табл. 2.1.

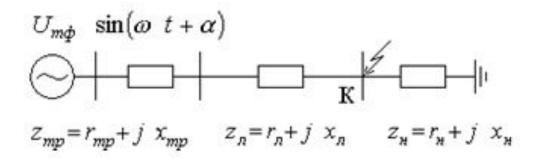


Рис.2.2- Схема замещения исследуемой электрической системы

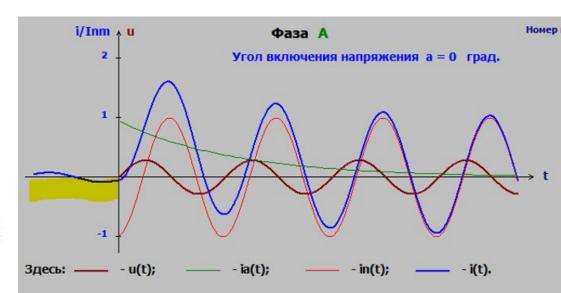
В данной системе мы рассматриваем ток протекающий перед коротким замыканием (предшествующий ток), а также рассматриваем переходный процесс при коротком замыкании.

Ток, протекавший в этой цепи перед коротким замыканием, называется предшествующим. Например, предшествующий ток фазы A можно определить по формуле

$$i_{npA} = (U_{m\phi}/z_c)\sin(\omega t - \varphi) = I_m\sin(\omega t - \varphi). \tag{2.1}$$

Здесь $U_{m\phi} = \frac{\sqrt{2}}{\sqrt{3}}U_{H}$ — амплитуда фазного напряжения;

 I_m — амплитуда фазного тока;


$$\omega = 2\pi f$$
 — угловая частота сети;

$$z_c = \sqrt{r_c^2 + x_c^2}$$
 – полное сопротивление системы;

$$r_{c} = r_{mp} + r_{\pi} + r_{H} -$$
активное сопротивление системы;

$$x_c = x_{mp} + x_{\pi} + x_{H}$$
 – реактивное сопротивление системы;

 $\varphi = arctg(x_c/r_c)$ – угол сдвига между током и напряжением.

В данной системе мы рассматриваем ток протекающий перед коротким замыканием (предшествующий ток), а также рассматриваем переходный процесс при коротком замыкании.

Дифференциальное уравнение переходного процесса, возникающего при коротком замыкании, например, для фазы A можно записать в следующем виде:

$$U_{m\phi}\sin(\omega t + \alpha) = i_A r_K + L_K di_A / dt$$
 (2.2)

Решением этого уравнения является выражение [2]

$$i_A = i_{nA} + i_{aA} = I_{nm} \sin(\omega t + \alpha - \varphi_K) + i_o e^{-t/T_a}$$
, (2.3)

где i_n , i_a - периодическая и апериодическая составляющие тока;

 $I_{nm} = U_{mdb} / z_{\kappa}$ – амплитуда периодической составляющей тока;

 $T_a = L_{\kappa} / r_{\kappa} = x_{\kappa} / (\omega r_{\kappa})$ — постоянная времени апериодической составляющей тока;

 $z_{\kappa} = \sqrt{r_{\kappa}^2 + x_{\kappa}^2}$ — полное сопротивлений цепи от точки питания до точки замыкания (цепи КЗ);

 $r_{\kappa} = r_{mp} + r_{\pi}$ – активное сопротивление цепи КЗ;

 $x_{\kappa} = x_{mp} + x_{\pi}$ — реактивное сопротивление цепи КЗ;

 $\varphi_{K} = arctg(x_{K}/r_{K})$ – угол сдвига между током и напряжением в цепи КЗ;

 i_{o} — начальное значение апериодической составлявшей тока;

 L_{κ} – индуктивность цепи КЗ:

 α – фаза напряжения при времени t=0.

I этап работы – Определение максимально возможного тока короткого замыкания в исследуемой цепи.

Необходимо в исследуемой цепи (в указанной фазе) найти максимально возможный ток короткого замыкания (ударный ток Іу необходим для правильного выбора аппаратуры) и соответствующий ему ударный коэффициент ky=Iy/Inm=1, где Inm—амплитуда периодической составляющей тока.

II этап работы – Определение минимально возможного тока короткого замыкания в исследуемой цепи.

Необходимо найти угол включения, при котором возникает минимально возможный ток короткого замыкания, соответствующий коэффициенту k=Imax/Inm=1.

Что такое ударный ток?

УДАРНЫЙ ТОК КОРОТКОГО ЗАМЫКАНИЯ — наибольшее мгновенное значение силы тока в электрической цепи при возникновении короткого замыкания. Сила тока в цепи достигает этого значения примерно через половину периода (для переменного тока) после возникновения короткого замыкания.

Ударным током короткого замыкания называют максимальное мгновенное значение полного тока при наиболее неблагоприятных условиях.

Что такое ударный коэффициент?

Отношение ударного тока короткого замыкания к амплитуде периодической составляющей тока короткого замыкания рабочей частоты в начальный момент времени.

Ударный коэффициент показывает превышение ударного тока над амплитудой периодической составляющей.

О расчете ударного коэффициента

В практике расчетов Ударный коэффициент чаще всего принимается равным $k_{v} = 1.8$. В этом случае

$$i_v = 2,55I_n$$

Типовые постоянные времени и ударные коэффициенты на шинах оборудования приведены в таблице 3.1.

Таблица 3.1

Типовые постоянные врег	мени и ударные коэффицие	нты
-------------------------	--------------------------	-----

Наименование оборудования	Постоянная времени T_a , c	Ударный коэффициент $k_{\rm V}$
Турбогенератор	0,1-0,3	1,95
Блок генератор- трансформатор	0,04	1,8
влэп	0,01	1,3
клэп	0,001	1

В сетях низкого напряжения 0,4–0,66 кВ $k_v \le 1,3$.

Пределы изменения ударного коэффициента в простейшей цепи:

1.
$$L_k(x_k) = 0$$
, $T_a \to 0$, $k_y = 1 + e^{\frac{-0.01}{0}} = 1$.
2. $T_a \to \infty$, $k_y \to 1 + e^{\frac{-0.01}{\infty}} \to 2$ и $k_y = 2$.

2.
$$T_a \to \infty$$
, $k_y \to 1 + e^{-\infty} \to 2$ и $k_y = 2$.

Таким образом $1 < k_y < 2$.

У нас в ДЗ И РГР

 $k_y = 1,95; T_{\mathfrak{I}(c)} = 0,2c$ — при КЗ на шинах генератора;

 $k_y = 1,9; T_{_{\mathfrak{I}}(c)} = 0,1c$ — при КЗ на сборных шинах повышенного напряжения

электрических станций;

 $k_y = 1, 8$; $T_{\mathfrak{I}(c)} = 0,045c$ — при КЗ в распределительных сетях.

1. Дать определение понятию «источник бесконечной мощности».

Источник бесконечной мощности — источник, собственное сопротивление которого равно нулю и его напряжение, изменяясь с постоянной частотой, имеет неизменную амплитуду.

Любые изменения в присоединенных цепях не влияют на работу такого источника. Практически это возможно, например, при КЗ в сетях, удаленных от электростанций крупных энергосистем (сети 6-10/0,4кВ).

2. Записать уравнение предшествующего тока, определить все параметры этого уравнения.

Ток, протекавший в этой цепи перед коротким замыканием, называется предшествующим. Например, предшествующий ток фазы А можно определить по формуле

$$i_{npA} = \left(U_{m\phi}/z_c\right)\sin(\omega t - \varphi) = I_m\sin(\omega t - \varphi). \tag{2.1}$$

Здесь
$$U_{m\phi} = \frac{\sqrt{2}}{\sqrt{3}}U_{\scriptscriptstyle H}$$
 – амплиту да фазного напряжения;

 I_m – амплитуда фазного тока;

$$\omega = 2\pi f$$
 – угловая частота сети;

$$z_c = \sqrt{r_c^2 + x_c^2}$$
 – полное сопротивление системы;

$$r_{c} = r_{mp} + r_{\pi} + r_{H} -$$
активное сопротивление системы;

$$x_{c} = x_{mp} + x_{\pi} + x_{H}$$
 – реактивное сопротивление системы;

$$\varphi = arctg(x_c / r_c)$$
 – угол сдвига между током и напряжением.

3. Записать уравнение для мгновенного значения тока трехфазного короткого замыкания, определить все параметры этого уравнения.

$$i_y = I_{nm} + I_{nm}e^{-0.01/T_a} = k_{1y}I_{nm}$$

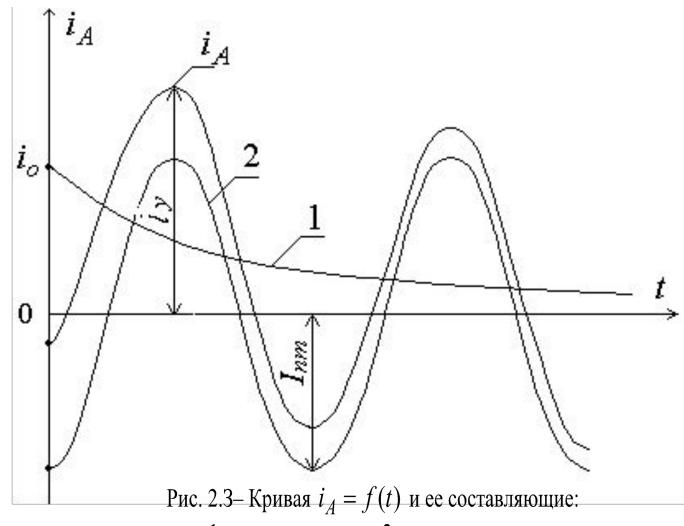
где $k_{1y}=1+e^{-0.01/T_a}$ - ударный коэффициент (при $i_{np}=0$). $I_{nm}=U_{m\phi}/z_{\kappa}$ – амплитуда периодической составляющей тока;

$$U_{m\phi} = \frac{\sqrt{2}}{\sqrt{3}}U_{\scriptscriptstyle H}$$
 – амплитуда фазного напряжения;

 $z_{\kappa} = \sqrt{r_{\kappa}^2 + x_{\kappa}^2}$ - полное сопротивлений цепи от точки питания до точки замыкания;

$$T_a = L_{\kappa} / r_{\kappa} = x_{\kappa} / (\omega r_{\kappa})$$
 - постоянная времени апериодической составляющей тока;

i_y — ударный ток— наибольшее $\,$ мгновенное значение тока ;

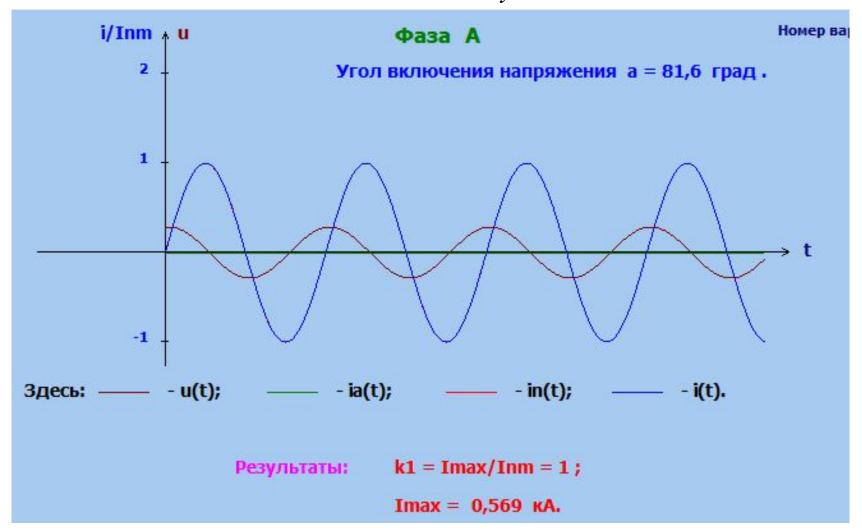

4. Как определить действующее значение тока КЗ за первый период?

 I_n — действующее значение периодической составляющей тока в первый период КЗ.

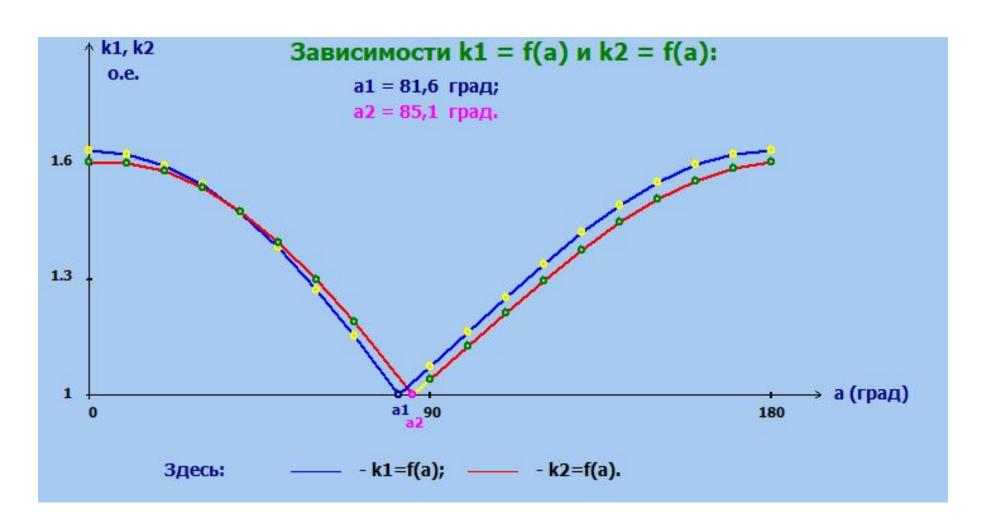
$$I_{n} = \frac{I_{nm}}{\sqrt{2}} = \frac{\sqrt{2} \cdot U_{tp}}{z_{\kappa}} = \frac{\sqrt{2} \cdot \frac{\sqrt{2}}{\sqrt{3}} U_{H}}{\sqrt{r_{\kappa}^{2} + x_{\kappa}^{2}}} = \frac{2 \cdot \mathcal{U}_{H} \cdot \sqrt{r_{mp} + r_{n}^{2} + (mp + r_{n}^{2})^{2} + (mp + r_{n}^{2})^{2}}}{\sqrt{3}}$$

5. Изобразить волновой график полного тока короткого замыкания и его составляющих.

Максимальное значение полного тока короткого замыкания называют ударным током, а отношение ударного тока к амплитуде периодической составляющей – ударным коэффициентом. Величины l_{v} и k_{v} необходимо знать для правильного выбора аппаратуры, они зависят от параметров цепи и предшествующего режима


1- апериодическая; 2- периодическая

6. В каких пределах изменяется ударный коэффициент в индуктивно — активной цепи?


где $k_{1y}=1+e^{-0.01/T_a}$ - ударный коэффициент (при $i_{np}=0$). При $T_a=\infty$ ($r_{\kappa}=0$) ударный коэффициент $k_{1y}=2$, в реальных схемах $k_{1y}<2$. При $\alpha=\phi_{\kappa}$ апериодическая составляющая вообще не возникнет и сразу наступает установившийся режим, т.е. $k_{1y}=1$.

Таким образом, коэффициент k_{1y} может изменяться от 1 до 2 и зависит от α (рис. 2.4). Если угол $\alpha < \varphi_{\kappa}$, то i_{\max} возникнет на первой полуволне, а при $\alpha > \varphi_{\kappa}$ — на второй. В лабораторной работе при $i_{np} = 0$ необходимо построить зависимость $k_{1y} = f(\alpha)$.

7. Нарисовать зависимость i = f(t) при граничных значениях k_y .

8. Изобразить зависимости $k_1 = f(\alpha)$ (при $i_{\pi p} = 0$) и $k_2 = f(\alpha)$ (при $i_{\pi p} \neq 0$).

9. В каком случае можно пренебречь активным сопротивлением цепи при расчетах токов КЗ?

если активное сопротивление цепи K3 меньше одной трети индуктивного сопротивления (r < x/3), то им можно пренебречь

В сетях с напряжением выше 1000 В преобладают индуктивные сопротивления элементов и активными сопротивлениями часто можно пренебречь. При этом расчетные схемы сводятся к однородным и существенно сокращается число вычислительных операций при преобразованиях схем.

10. Как определить ударный ток в сложной цепи?

В зависимости от цели расчета электромагнитных переходных процессов расчетные условия могут быть весьма разнообразными. Например, для выбора электрооборудования необходимо определять максимальный ток в месте к.з., для настройки релейной защиты и системной автоматики – минимальное значение тока к.з. и т.д.

Определение периодической составляющей и ударного тока к.з.

Периодическая составляющая тока к.з. для преобразованной схемы замещения ЭС (рис. 2.3) находится по формуле

$$E_{\Sigma} \qquad x_{\Sigma}(\underline{Z}_{\Sigma})$$

$$I_{\Sigma_{K}}$$

$$I_{\Sigma_{K}}$$

$$I_{\Sigma_{\rm K}} = \frac{E_{\Sigma}}{x_{\Sigma}\left(\underline{Z}_{\Sigma}\right)}$$
. Рис. 2.3. Эквивалентная (2.5) (результирующая) схема замещения сложной ЭС

Максимальное значение тока к.з. – ударный ток к.з. $i_{\rm y}$ – определяется как

$$i_{\rm y} = \sqrt{2} \ k_{\rm y} \ I_{\Sigma_{\rm K}} \,, \tag{2.6}$$

где
$$k_{\rm y} = 1 + e^{-0.01/\tau_{\rm a9}}$$
 и $\tau_{\rm a9} = \frac{1}{\omega} \; \frac{x_{\Sigma_{\rm K}} \left(r=0\right)}{r_{\Sigma_{\rm K}} \left(x=0\right)}$.

10. Как определить ударный ток в сложной цепи?

Ударный ток трехфазного КЗ ($i_{yд}$) в электроустановках с одним источником энергии (энергосистема или автономный источник) рассчитывают по формуле:

$$\begin{split} i_{y\phi} &= \sqrt{2}I_K k_{y\phi}, & \text{где } k_{y\phi} &= 1 + e^{-t_{y\phi}} / T_a - \text{ударный коэффициент тока К3}; \\ \varphi_k &= \arctan t g \frac{x_k \sum}{r_k \sum}; \quad t_{y\phi} &= 0,01 \frac{\pi/2 + \phi_k}{\pi}; \quad T_a = \frac{x_k \sum}{\omega r_k \sum}. \end{split}$$

11. Записать выражение для действующего значения тока произвольной формы.

$$I_{m} = \frac{U_{m}}{Z_{k}} = \frac{U_{m}}{\sqrt{r_{k}^{2} + x_{k}^{2}}} = \frac{U_{m}}{x_{k}} \frac{1}{\sqrt{\left(\frac{r_{k}}{x_{k}}\right)^{2} + 1}} = I_{m(r=0)} \frac{1}{\sqrt{\left(\frac{r_{k}}{x_{k}}\right)^{2} + 1}}$$