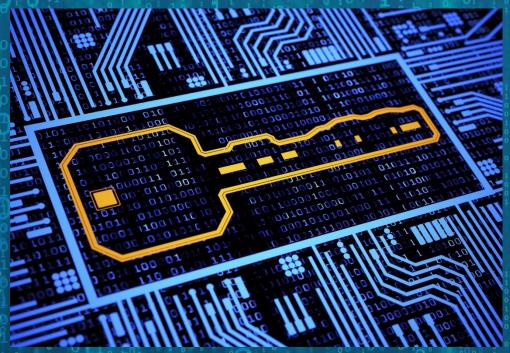


Кодирование — это процесс преобразования данных из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения, автоматической переработки и сохранения от несанкционированного доступа.

Основные способы кодирования текстовой информации


Существует несколько основных способов кодирования текстовой информации:

Графический, в котором текстовая информация кодируется путем использования специальных рисунков или знаков; Символьный, в котором тексты кодируются с использованием символов того же алфавита, на котором написан исходник; Числовой, в котором текстовая информация кодируется с помощью чисел.

Стенография — это один из способов кодирования текстовой информации с помощью специальных знаков. Она представляет собой быстрый способ записи устной речи. Навыками стенографии могут владеть далеко не все, а лишь немногие специально обученные люди, которых называют стенографистами. Эти люди успевают записывать текст синхронно с речью выступающего человека, что, на наш взгляд, достаточно сложно. Однако для них это не проблема, поскольку в стенограмме целое слово или сочетание букв могут обозначаться одним знаком. Скорость стенографического письма превосходит скорость обычного в 4–7 раз. Расшифровать (декодировать) стенограмму может только сам стенографист.

Шифрован

Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование — процесс обратного преобразования, при котором восстанавливается исходный текст. Шифрование — это тоже кодирование, но с засекреченным методом, известным только источнику и адресату. Методами шифрования занимается наука криптография.

Подробнее о числовом

В каждом национальном языке имеется свой алфавит, который состоит из определенного набора букв, следующих друг за другом, а значит и имеющих свой порядковый номер. Каждой букве сопоставляется целое положительное число, которое называют кодом символа. Именно этот код и будет хранить память компьютера, а при выводе на экран или бумагу преобразовывать в соответствующий ему символ. Помимо кодов самих символов в памяти компьютера хранится и информация о том, какие именно данные закодированы в конкретной области памяти. Это необходимо для различия представленной информации в памяти компьютера (числа и символы).

Двоичное кодирование текстовой информации

Начиная с конца 60-х годов, компьютеры все больше стали использоваться для обработки текстовой информации и в настоящее время большая часть персональных компьютеров в мире (и наибольшее время) занято обработкой именно текстовой информации.

Традиционно для кодирования одного символа используется количество информации, равное 1 байту, то есть I = 1 байт = 8 битов.

Для кодирования одного символа требуется 1 байт информации.

Если рассматривать символы как возможные события, то по формуле можно вычислить, какое количество различных символов можно закодировать:

 $N = 2^1 = 2^8 = 256$.


Символ	Двоичный код	Десятичный код	Символ	Двоичный код	Десятичный код
Α	01000001	65	N	01001110	78
В	01000010	66	0	01001111	79
С	01000011	67	Р	01010000	80
D	01000100	68	Q	01010001	81
E	01000101	69	R	01010010	82
F	01000110	70	S	01010011	83
G	01000111	71	Т	01010100	84
Н	01001000	72	U	01010101	85
1	01001001	73	٧	01010110	86
J	01001010	74	W	01010111	87
K	01001011	75	Х	01011000	88
L	01001100	76	Υ	01011001	89
М	01001101	77	Z	01011010	90

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры, знаки, графические символы и пр.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер - по их кодам.

При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает один байт.

В процессе вывода символа на экран компьютера производится обратный процесс - декодирование, то есть преобразование кода символа в его изображение.

