Вакцины и анатоксины

Effect of vaccination on the incidence of viral disease

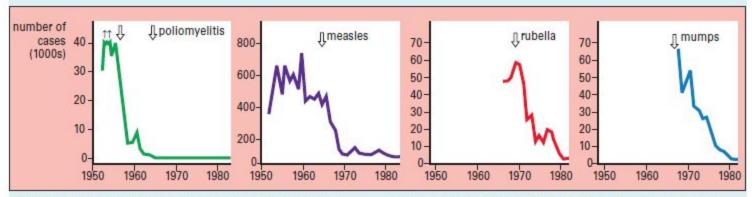
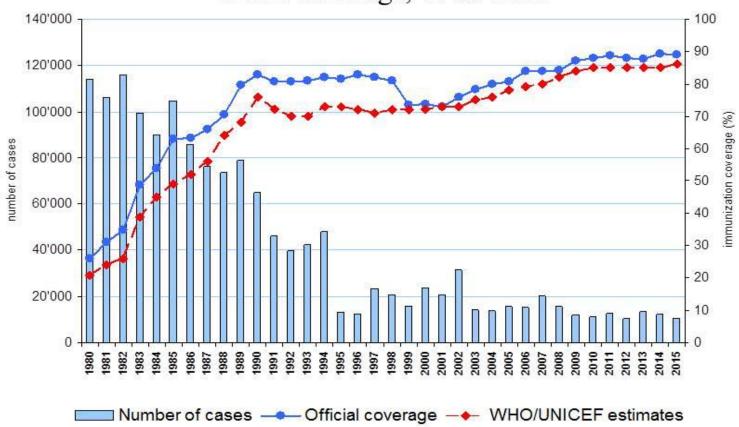
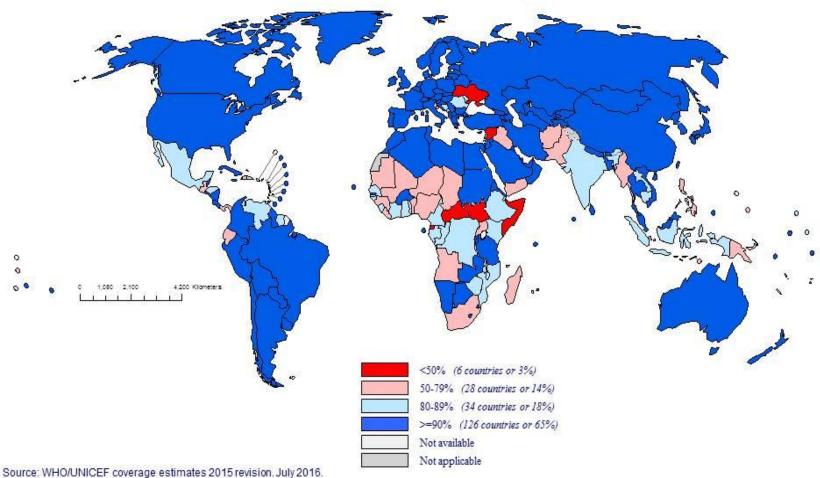
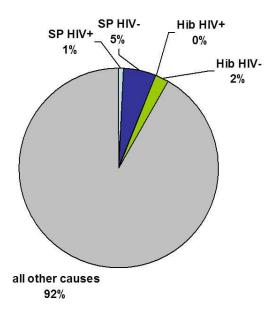



Fig. 18.4 The effect of vaccination on the incidence of various viral diseases in the USA has been that most infections have

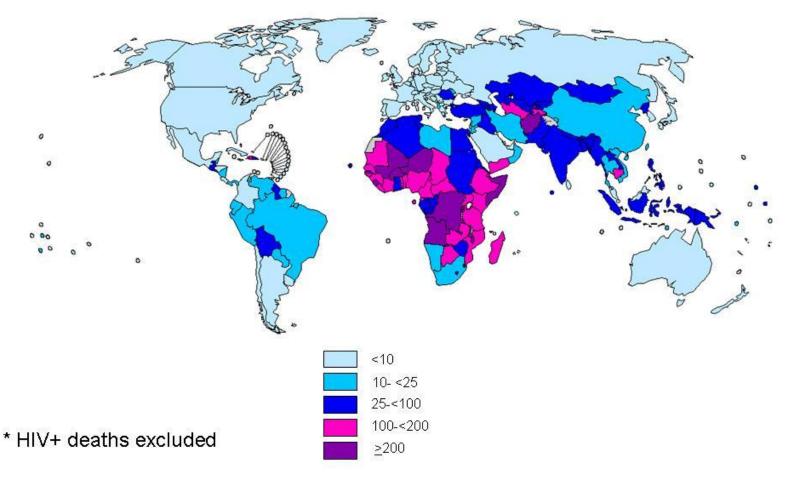

shown a dramatic downward trend since the introduction of a vaccine (arrows).

Total tetanus global annual reported cases and DTP3 coverage, 1980-2015

Immunization coverage with DTP3 vaccines in infants (from <50%), 2015


Source: WHO/UNICEF coverage estimates 2015 revision. July 2016. Map production: Immunization Vaccines and Biologicals, (IVB). World Health Organization. 194 WHO Member States. Date of slide: 28 July 2016

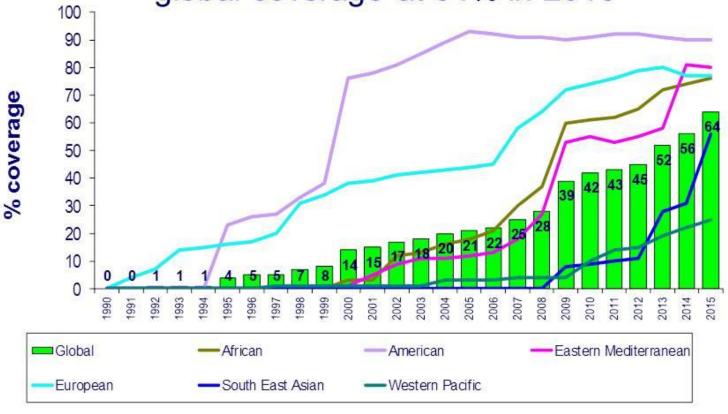
The boundaries and names shown and the designations used on this map do not imply the expression of any opision whatsoever on the part of the World Health Organization concerning the legal status of any country, tertitory, city or seasor of its authorities, or concerning the defimitation of its fronties or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. © WHD 2016. All rights reserved.


Гемофильная палочка типа b (Hib)

- Гемофильная палочка типа b (Hib) это бактерия, отвечающая за тяжелую пневмонию, менингит и другие инвазивные болезни практически исключительно у детей до 5 лет. Она передается через дыхательные пути от инфицированного человека к восприимчивому человеку. Нib также потенциально вызывает тяжелые инфекционно-воспалительные заболевания лица, рта, крови, надгортанного хряща, суставов, сердца, костей, брюшины и трахеи. И хотя эта проблема присутствует во всем мире, до внедрения вакцины в национальные программы иммунизации бремя гемофильной инфекции типа b было значительно большим в странах, обладающих скудными природными ресурсами
- Вакцины это единственный метод в сфере общественного здравоохранения, позволяющий предотвратить большинство серьезных заболеваний, вызываемых гемофильной инфекцией типа b. Вакцины против гемофильной b инфекции безопасны и эффективны даже при введении в первом полугодии жизни. Ввиду продемонстрированной безопасности и действенности ВОЗ рекомендует включить конъюгированные вакцины против гемофильной b инфекции во все плановые иммунизации детей первого года жизни

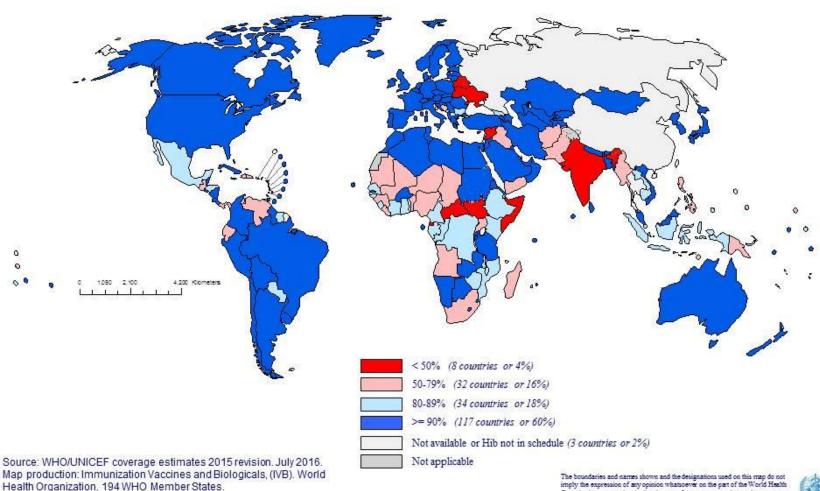
Data Source: WHO/IVB, March 2012

Hib death* rate (per 100000 children under age 5)



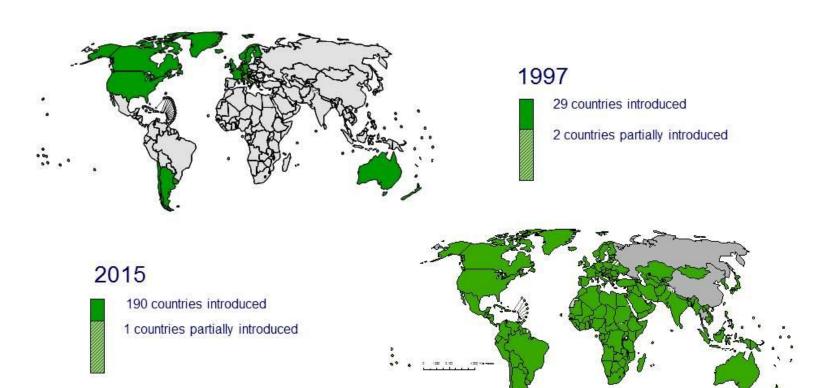
Date of slide: 03 August 2009

363,000 global child Hib deaths, 2000


8.1 million global Hib cases, 2000

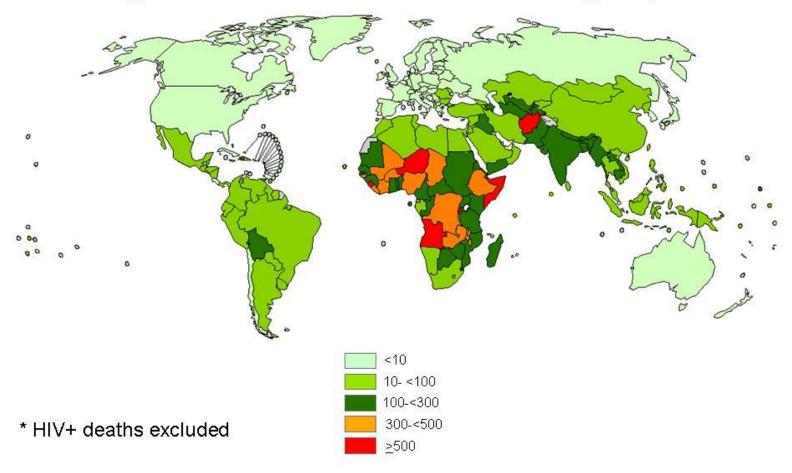
Global Immunization 1990-2015, 3rd dose of Hib coverage in infants global coverage at 64% in 2015

Immunization coverage with 3rd dose of Hib containing vaccines in infants, 2015



Date of slide: 29 July 2016

The boundaries and names shown and the designations to do on this ring on on this ringly the expression of any opinion withance we on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the defirmation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement © WHO 2016. All rights reserved


Countries having introduced Hib vaccine in 1997 and 2015

Source: WHO/UNICEF coverage estimates 2015 revision, July 2016. 194 WHO Member States. Map production: Immunization Vaccines and Biologicals, (IVB). World Health Organization Date of slide: 29 July 2016

SP death* rate (per 100000 children under age 5)

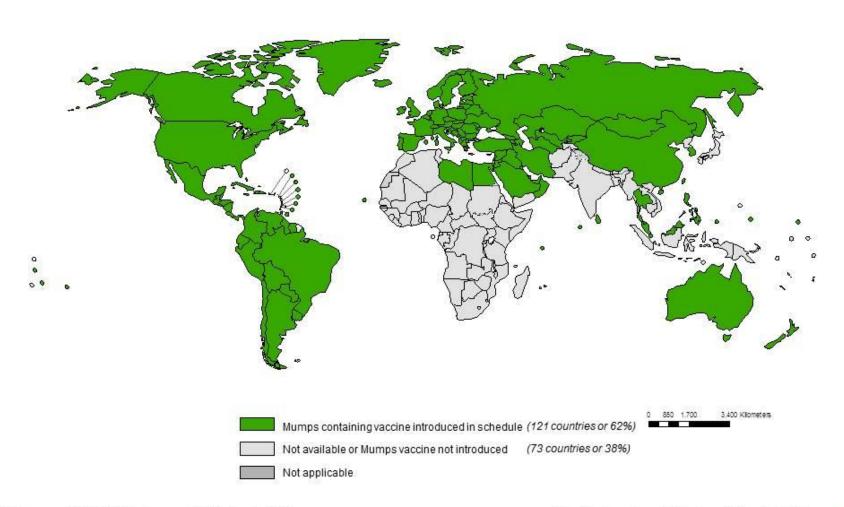
Date of slide: 03 August 2009

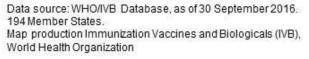
735,000 global pneumococcal deaths, 2000

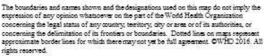
14.5 million global pneumococcal cases, 2000

Режим прививок против пневмококковой и гемофильной инфекции при начале вакцинации в возрасте старше 6 месяцев

Возраст	Вакцинация и ревакцинация	Вакцинация и ревакцинация
ребенка	против пневмококковой инфекции	против гемофильной инфекции
6—11 мес.	Двукратная вакцинация с интервалом не менее 1 месяца и ревакцинация через 1 год	
1—2 года	Двукратное введение вакцины с интервалом не менее 2 месяцев	Однократное введение вакцины
2—5 лет	Однократное введение вакцины	


Корь


- Корь является одной из основных причин смерти среди детей раннего возраста, даже несмотря на наличие безопасной и эффективной по стоимости вакцины
- В 2015 году в глобальных масштабах произошло 134 200 случаев смерти от кори почти 367 случаев в день или **15 случаев в час**
- За период с 2000 по 2015 год противокоревая вакцинация привела к снижению глобальной смертности от кори на 79%
- В 2015 году около 85% всех детей в мире получили одну дозу противокоревой вакцины в течение первого года жизни в ходе оказания регулярных медицинских услуг, по сравнению с 73% в 2000 году
- В 2000-2015 гг. вакцинация от кори предотвратила, по оценкам, 20,3 миллиона случаев смерти, сделав вакцину от кори одним из наиболее выгодных достижений общественного здравоохранения
- Большинство смертельных случаев кори происходит из-за осложнений, связанных с этой болезнью. Чаще всего осложнения развиваются у детей в возрасте до пяти лет или у взрослых людей старше 20 лет. Самые серьезные осложнения включают слепоту, энцефалит (инфекцию, приводящую к отеку головного мозга), тяжелую диарею и связанную с ней дегидратацию, ушные инфекции и тяжелые инфекции дыхательных путей, такие как пневмония. Тяжелое течение кори более вероятно среди плохо питающихся детей младшего возраста, особенно тех, кто испытывает недостаток витамина А, или чья иммунная система ослаблена ВИЧ/СПИДом или другими болезнями


Эпидемический паротит

- Эпидемический паротит это инфекция, вызванная вирусом и распространяющаяся от человека к человеку при прямом контакте или воздушно-капельным путем. Иногда ее называют эпидемическим паротитом или свинкой, и она поражает главным образом слюнные железы. Первые симптомы, как правило, неспецифичны, например: головная боль, недомогание и лихорадка, сопровождающиеся в течение дня характерным набуханием околоушной (слюнной) железы
- Эпидемический паротит это в основном детское заболевание, наиболее часто поражающее детей в возрасте от 5 до 9 лет. Тем не менее вирус эпидемического паротита может поражать взрослых с возможными осложнениями, которые, вероятно, будут тяжелыми. Осложнения эпидемического паротита могут включать менингит (до 15% случаев), орхит и глухоту. Очень редко эпидемический паротит может привести к энцефалиту и хроническому неврологическому заболеванию

Countries using Mumps containing vaccines in their national infants immunization schedule, 2015

Краснуха

— это заразная и, как правило, легкая вирусная инфекция, поражающая чаще всего детей и молодых людей. Краснуха у беременных женщин может приводить к гибели плода врожденным порокам развития, таким как синдром врожденной краснухи (СВК). По оценкам, в мире ежегодно рождается более 100 000 детей с СВК. Специального лечения краснухи нет, но болезнь можно предотвратить с помощью вакцинации

http://measlesrubellainitiative.org/

Полиомиелит

- Полиомиелит поражает, в основном, детей в возрасте до 5 лет
- В одном из 200 случаев инфицирования развивается необратимый паралич (обычно ног). 5-10% из числа таких парализованных людей умирают из-за наступающего паралича дыхательных мышц
- С 1988 года число случаев заболевания полиомиелитом уменьшилось более чем на 99%: по оценкам, с 350 000 случаев до 74 случаев, зарегистрированных в 2015 году. Такое уменьшение стало результатом глобальных усилий по ликвидации этой болезни
- До тех пор пока в мире остается хоть один инфицированный ребенок, риску заражения полиомиелитом подвергаются дети во всех странах. Неспособность ликвидировать полиомиелит в этих остающихся устойчивых очагах может привести к тому, что через 10 лет в мире будет ежегодно происходить до 200 000 новых случаев заболевания
- В большинстве стран благодаря глобальным усилиям расширены потенциальные возможности для борьбы с другими инфекционными болезнями путем создания эффективных систем эпиднадзора и иммунизации
- Полиомиелит является высокоинфекционным заболеванием, вызываемым вирусом. Он поражает нервную систему и за считанные часы может привести к общему параличу. Вирус передается от человека человеку, в основном, фекально-оральным путем или, реже, через какой-либо обычный носитель инфекции (например, загрязненную воду или продукты питания) и размножается в кишечнике. Первыми симптомами являются лихорадка, усталость, головная боль, рвота, ригидность шеи и боли в конечностях

Вакцины -

препараты, содержащие антигенный материал, которые используют для профилактики инфекционных заболеваний

Анатоксины -

экзотоксины, лишенные токсигенности, но сохранившие иммуногенность. Используются для специфической профилактики инфекционных заболеваний

The main antigenic preparations

type of a	antigen	vaccine examples
living organisms	natural attenuated	vaccinia (for smallpox) vole bacillus (for tuberculosis; historical) polio (Sabin; oral polio vaccine)*, measles*, mumps*, rubella*, yellow
intact but non-living organisms	viruses	fever 17D, varicella-zoster (human herpesvirus 3), BCG (for tuberculosis) polio (Salk)*, rabies, influenza, hepatitis A, typhus
Organisms	bacteria	*pertussis, typhoid, cholera, plague
subcellular fragments	capsular polysaccharides	pneumococcus, meningococcus, Haemophilus influenzae
	surface antigen	hepatitis B*
toxoids		tetanus*, diphtheria*
recombinant DNA-based	gene cloned and expressed	hepatitis B (yeast-derived)*
	genes expressed in vectors	experimental
	naked DNA	experimental
anti-idiotype		experimental

Fig. 18.2 A wide range of antigenic preparations are used as vaccines.

Live attenuated vaccines

disease		remarks	
viruses	polio	types 2 and 3 may revert; also killed vaccine	
	measles	80% effective	
	mumps		
	rubella	now given to both sexes	
	yellow fever	stable since 1937	
	varicella-zoster	mainly in leukemia	
	hepatitis A	also killed vaccine	
bacteria	tuberculosis	stable since 1921; also some protection against leprosy	

Fig. 18.3 Attenuated vaccines are available for many, but not all, infections. In general it has proved easier to attenuate viruses than bacteria.

Killed (whole organism) vaccines

disease		remarks	
viruses	polio	preferred in Scandinavia; safe in immunocompromised	
	rables	can be given post-exposure, with passive antiserum	
	influenza	strain-specific	
	hepatitis A	also attenuated vaccine	
bacteria	pertussis	potential to cause brain damage (controversial)	
	typhoid	about 70% protection	
	cholera	protection dubious; may be combined with toxin subunit	
	plague	short-term protection only	
	Q fever	good protection	

Flg. 18.5 The principal vaccines using killed whole organisms.

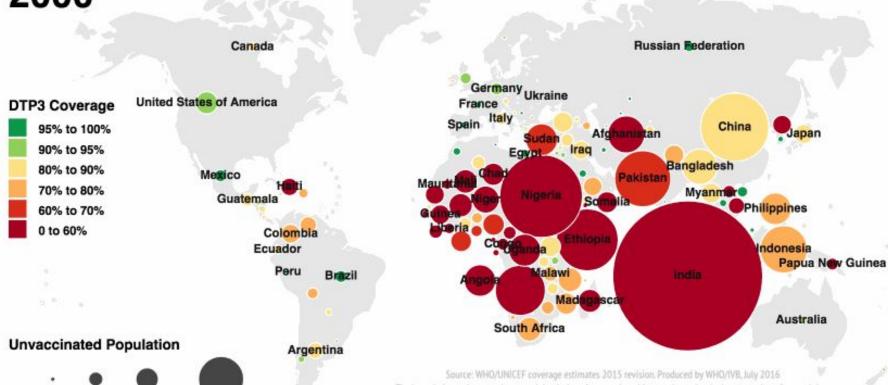
Toxin-based vaccines

organism	vaccine	remarks	
Clostridium tetani Corynebacterium diphtheriae	inactivated toxin (formalin)	three doses, alum-precipitated boost every 10 years usually given with tetanus	
Vibrio cholerae Clostridium perfringens	toxin, B subunit inactivated toxin (formalin)	sometimes combined with whole killed organisms for newborn lambs	

Fig. 18.6 The principal toxin-based vaccines. Note that there are no vaccines against the numerous staphylococcal and streptococcal exotoxins, or against bacterial endotoxins such as lipopolysaccharides.

Subunit vaccines

	organism	remarks
virus	hepatitis B virus	surface antigen can be purified from blood of carriers or produced in yeast by recombinant DNA technology
bacteria	Neisseria meningitidis	capsular polysaccharides or conjugates of group A and C are effective; group B is non-immunogenic
	Streptococcus pneumoniae	84 serotypes; capsular polysaccharide vaccines contain 23 serotypes; conjugates with five or seven bacterial serotypes are being tested
	Haemophilus influenzae B	good conjugate vaccines now available


Fig. 18.7 Conjugate vaccines are replacing pure polysaccharides. *N. meningitidis* type B is non-immunogenic in humans because the capsular polysaccharide cross-reacts with self carbohydrates towards which the host is immunologically tolerant.

2000

250k

100k

1.0M

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © WHO 2015. All rights reserved

Antibody responses to live and killed polio vaccine

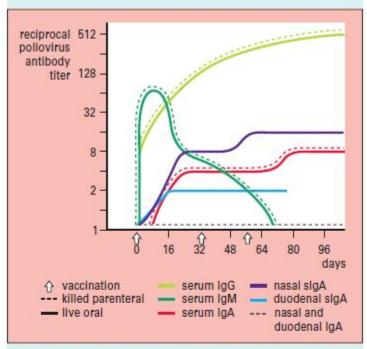


Fig. 18.10 The antibody response to orally administered live attenuated polio vaccine (solid lines) and intramuscularly administered killed polio vaccine (broken lines). The live vaccine induces the production of secretory IgA (sIgA) in addition to serum antibodies, whereas the killed vaccine induces no nasal or duodenal sIgA. As sIgA is the immunoglobulin of the mucosa-associated lymphoid tissue (MALT) system (see Chapter 2), the live vaccine confers protection at the portal of entry of the virus, the gastrointestinal mucosa. (Courtesy of Professor JR Pattison, Ch. 26 in Brostoff J, et al., eds. Clinical immunology. London: Mosby; 1991)

Safety problems with vaccine

type of vaccine	potential safety problems	examples	
attenuated vaccines	reversion to wild type severe disease in immunodeficient patients persistent infection hypersensitivity to viral antigens hypersensitivity to egg antigens	especially polio types 2 and 3 vaccinia, BCG, measles varicella-zoster measles measles, mumps	
killed vaccines	vaccine not killed yeast contaminant contamination with animal viruses contamination with endotoxin	polio accidents in the past hepatitis B polio pertussis	

Fig. 18.11 The potential safety problems encountered with vaccines emphasize the need for continuous monitoring of both production and administration.

Vaccines in general use

disease	vaccine	remarks	
tetanus diphtheria pertussis polio (DTPP)	toxoid toxoid killed whole killed (Salk) or attenuated (Sabin)	given together in three doses between 2 and 6 months; tetanus and diphtheria boosted every 10 years	
measles mumps rubella	attenuated	given together (MMR) at 12–18 months	
Haemophilus influenzae type b	polysaccharide	new; may be given with DTPP	

Fig. 18.12 Vaccines that are currently given, as far as is possible, to all individuals.

Vaccines restricted to certain groups

disease	vaccine	eligible groups
tuberculosis	BCG	tropics – at birth; UK – 10–14 years; USA – at-risk only
hepatitis B	surface antigen	at risk (medical, nursing staff, etc.); drug addicts; male homosexuals; known contacts of carriers
rables	killed	at risk (animal workers); postexposure
meningitis yellow fever typhoid, cholera hepatitis A	polysaccharide attenuated killed or mutant killed or attenuated	travelers
influenza	killed	at risk; elderly
pneumococcal pneumonia	polysaccharide	elderly
varicella-zoster	attenuated	leukemic children

Fig. 18.13 Vaccines that are currently restricted to certain groups.

Major diseases for which no vaccines are available

	disease	problems
viruses	HIV	antigenic variation; immunosuppression?
	herpes viruses	risk of reactivation? (but varicella-zoster appears safe)
	adenoviruses, rhinoviruses	multiple serotypes
bacteria	staphylococci group A streptococci	early vaccines ineffective (antibiotics originally better)
	Mycobacterium leprae	(BCG gives some protection)
	Treponema pallidum (syphilis)	ignorance of effective immunity
	Chlamydia spp.	early vaccines ineffective
fungi	Candida spp. Pneumocystis spp.	ignorance of effective immunity
protozoa	malaria	antigenic variation
	trypanosomiasis – sleeping sickness; Chagas' disease	extreme antigenic variation; immunopathology; autoimmunity; trials encouraging
	leishmaniasis	
worms	schistosomiasis	(trials in animals encouraging)
	onchocerciasis	ignorance of effective immunity

Fig. 18.15 For some serious diseases there is currently no effective vaccine. The predominant problem is the lack of understanding of how to induce effective immunity.

Passive immunization

disease	source of antibody	indication
diphtheria, tetanus	human, horse	prophylaxis, treatment
varicella-zoster	human	treatment in immunodeficiencies
gas gangrene, botulism, snake bite, scorpion sting	horse	post-exposure
rables	human	post-exposure (plus vaccine)
hepatitis B	human	post-exposure
hepatitis A, measles	pooled human immunoglobulin	prophylaxis (travel), post-exposure

Fig. 18.16 Although not so commonly used as 50 years ago, injections of specific antibody can still be a life-saving treatment in specific clinical conditions.

Non-specific immunotherapy

tumor necrosis factor

	source	remarks
microbial	filtered bacterial cultures	used by Coley (1909) against tumors
	BCG	some activity against tumors
cytokines	ΙΕΝα	effective for chronic hepatitis B, hepatitis C, herpes zoster, wart virus, prophylactic against common cold (also some tumors)
	IFNγ	effective in some cases of chronic granulomatous disease, lepromatous leprosy, leishmaniasis (cutaneous)
	IL-2	leishmaniasis (cutaneous)
	G-CSF	bone marrow restoration after cytotoxic drugs
cytokine	TNF antagonists	septic shock
inhibitors	IL-1 antagonists	severe (cerebral) malaria?
	IL-10	

G-CSF, granulocyte colony stimulating factor; IFN, interferon; IL, interleukin; TNF,

Fig. 18.17 Non-specific stimulation or inhibition of particular components of the immune system may sometimes be of benefit.