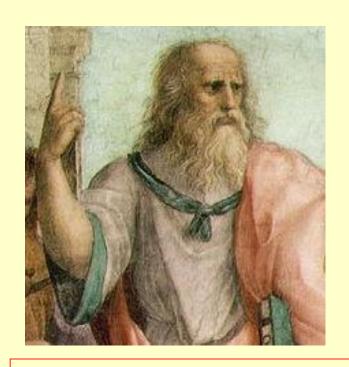
заштриховать множества

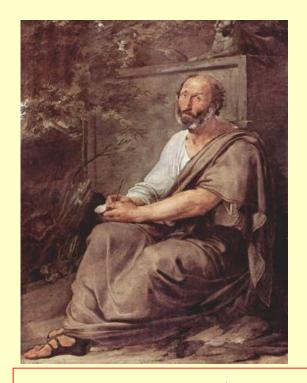
Основы логики

Логические операции



Философская логика

Философ Платон (428—347). Сочинения Платона содержат важный вклад в развитие философской логики. Платон ставит три вопроса: Пчто собственно можно считать истиной и ложью? Пкакова природа связи между посылками в рассуждениях и заключениями? Пкакова сущность понятий?



Формальная логика

Логика Аристотеля, в частности его теория силлогизма, имела огромное влияние на западную мысль. Его труды по логике, называемые Органон, представляют самое раннее исследование формальной логики и началом традиции, преемственность которой прослеживается до современности.



Математическая логика

Немецкий ученый Готфрид Лейбниц (1646 - 1716) заложил основы математической логики. Он пытался построить первые логические исчисления (свести логику к математике), предложил использовать символы вместо слов обычного языка, поставил много задач по созданию символьной логики, его идеи оказали влияние на последующие работы ученых в этой области.

«Логика» (от др.гр. logos) - слово, мысль, понятие, рассуждение, закон

Формальная логика – наука о законах и формах мышления

Основные формы мышления:

- Понятие это форма мышления, которая выделяет признаки предметачлы класса предметов, отличающие его от других
- Суждение это мысль, в которой что-то утверждается или отрицается о предметах
- Умозаключение прием мышления, позволяющий на основе одного или нескольких суждений-посылок получить новое суждение (знание или вывод)

Математическая логика — наука о применении математических методов в решении логических задач

Суждения - суть высказывания или логические выражения

Алгебра высказываний или алгебра логики - раздел математической логики для обработки логических выражений

Формальная логика

Высказывание – это повествовательное предложение, о котором всегда можно сказать, истинно оно или ложно.

Примеры высказываний:

«Листва на деревьях опадает осенью»;

«Зимой в Московской области нет зеленых деревьев».

Сложное высказывание получается из простых или сложных высказываний с использованием союзовсвязок И, ИЛИ и частицы НЕ

Например: «Ученик прогулял урок и получил двойку».

Задание№1 Являются ли эти предложения высказываниями?

- 1. Вы были в театре?
- 2. Завтра я не пойду на каток.
- 3. Мойте руки перед едой.
- 4. Если будет дождь, то мы поедем за грибами
- 5. Луна спутник Земли.
- 6. Если я поеду туда, то смогу ли вернуться?
- 7. IF X>1 THEN Y=0
- 8. Принеси мне книгу.
- 9. Некоторые люди имеют голубые глаза
- 10. Существуют такие люди, которые не любят животных.

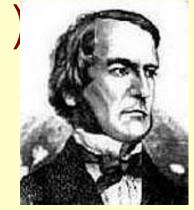
Задание№2

Укажите среди нижеприведенных высказываний, сложные они или простые:

- 1. Если две прямые параллельны, то они пересекаются
- 2. Идет дождь.
- 3. Все мышки серые, кошки тоже бывают серые.
- 4. На следующем уроке будет либо контрольная, либо свободный урок.
- 5. Треугольники с равными сторонами не равнобедренны
- 6. 7 + x > x + c + 0.1a
- 7. Число 3 больше числа 2.

Алгебра логики (Булева алгебра)

Алгебра логики отвлекается от смысловой содержательности высказываний. Ее интересует только один факт — истинно или ложно данное высказывание.



Дж. Буль

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами:

 $A = \{ Aристотель - основоположник логики \}$

 $B = \{ \text{На яблонях растут бананы} \}.$

Истинному высказыванию ставится в соответствие 1, ложному — 0. Таким образом, A = 1, B = 0.

Логическая переменная — высказывание в булевой алгебре, которое может принимать лишь два значения 1(истин**а)** и 0 (ложь)

Погическая функция – сложное логическое выражение, составленное из логических переменных

Логические операции

		•	
Операция	Название операции	Краткое прочтение высказывания	
$\neg A$	Инверсия(отрицание)	не А	
$A \wedge B$	Конъюнкция	АиВ	
$A \lor B$	Дизъюнкция	<i>А</i> или <i>В</i>	
$A \leftrightarrow B$	Эквивалентность	А эквивалентно В А тогда и только тогда, когда В	
$A \rightarrow B$	Импликация: А - условие, В - следствие	если <i>А</i> , то <i>В</i> . <i>А</i> влечёт <i>В</i>	
A ⊕ B	Исключающая или (строгая дизъюнкция)	либо <i>А,</i> либо <i>В</i>	

Логическая операция ИНВЕРСИЯ (отрицание):

соответствует словам **неверно**, **что**... и частице **не**; обозначение —, ¬;

Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

Пример инверсии: «Завтра я не приду к тебе».

Ta	Таблица истинности		ТИ	Диаграмма Эйлера-Венна
	A	Ā		(A)
	0	1		
	1	0		

<u>Логическая операция КОНЪЮНКЦИЯ</u> (логическое умножение):

в естественном языке соответствует союзу и;

Конъюнкция двух логических переменных истинна тогда и только тогда, когда оба высказывания истинны.

Например: «Светит солнце и поют птицы».

Таблица истинности		1СТИННОСТИ	Диаграмма Эйлера-Венна
A	В	A&B	
0	0	0	
0	1	0	
1	0	0	(A (B)
1	1	1	

<u>Логическая операция ДИЗЪЮНКЦИЯ</u> (логическое сложение):

соответствует союзу или; обозначение +; V;

Дизъюнкция двух логических переменных ложна тогда и только тогда, когда оба высказывания ложны.

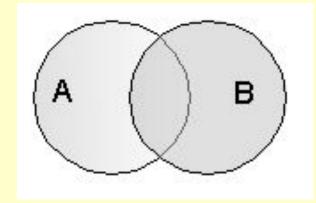
Например: **«В отпуске мы будем посещать театры или** выставки».

Дизъюнкцию называют также двоичным сложением с одной оговоркой: по правилу двоичного сложения 1 + 1 = 10, а в нашем примере 1 + 1 = 1.

Таблица истинности

Диаграмма Эйлера-Венна

A	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1



<u>Логическая операция ИМПЛИКАЦИЯ (логическое следование):</u>

в естественном языке соответствует обороту **если ..., то ...**; обозначение \rightarrow ;

Импликация двух логических переменных ложна только тогда, когда предпосылка истинна, а заключение ложно, и истинна – во всех остальных случаях.

Пример импликации: «Если завтра будет тепло, то мы пойдем гулять».

A	В	A ⇒ B
0	0	1
0	1	1
1	0	0
1	1	1

<u>Логическая операция ЭКВИВАЛЕНТНОСТЬ</u> (равнозначность):

в естественном языке соответствует оборотам речи тогда и только тогда; в том и только в том случае;

обозначения ≡;↔,~

Эквивалентность двух логических переменных истинна только тогда, когда обе переменные одновременно истинны или одновременно ложны.

Пример эквивалентности: «Я заведу себе щенка тогда и только тогда, когда хорошо изучу, как надо с ним обращаться.»

A	В	$\mathbf{A} \Leftrightarrow \mathbf{B}$
0	0	1
0	1	0
1	0	0
1	1	1

Логическая операция Исключающая или (Строгая дизъюнкция) в естественном языке соответствует оборотам речи либо..., либо.. обозначение **⊕**, \·/

Строгая дизъюнкция логических переменных истинна тогда только тогда, когда истинна только одна из логических переменных.

Пример строгой дизъюнкции: «Саша либо дома, либо вышел погулять с собакой».

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Таблица истинности

определяет, какие значения принимают высказывания, полученные с помощью логических операций, если исходные высказывания принимают значения 1 или 0

Α	В	¬А	A&B	A V B	A↔B	A→B	A⊕B
1	1	0	1	1	1	1	0
1	0	0	0	1	0	0	1
0	1	1	0	1	0	1	1
0	0	1	0	0	1	1	0

Логические операции

Приоритет логических операций:

- 1. () Операции в скобках
- 2. НЕ Отрицание
- 3. И логическое умножение
- 4. ИЛИ Логическое сложение
- **5.** → Импликация
- 6. ↔ Эквивалентность