Выбраковка результатов химического анализа

Решение вопроса: резко отличающиеся результаты – это грубая погрешность (промах) или нет, и их необходимо использовать при общей статистической обработке?

Уровень значимости — это максимальная вероятность того, что <u>ошибка</u> превзойдет некое предельное (критическое) значение ±∆х_{кр}, т.е. такое значение, что появление этой ошибки можно рассматривать как следствие значимой (неслучайной) причины.

Уровень значимости (%) показывает, сколько раз в каждых ста испытаниях мы рискуем ошибиться, принимая случайное событие за значимое.

Q-критерий

- располагают результаты анализа в ряд по нарастанию х₁<х₂<х₃< ...х₂
- 2. Вызывают сомнения x_{min} и x_{max}
- 3. Вычисляют величин $Q_{\mathfrak{g}_{\text{КСП}}} = \frac{(x_2 x_1)}{(x_n x_1)}$ ил $Q_{\mathfrak{g}_{\text{КСП}}} = \frac{(x_n x_{n-1})}{(x_n x_1)}$
- 4. Из таблиц для заданных числа измерений n и доверительной вероятности P находят Qтабл
- 5. Если Qэксп<Qтабл, то результат сохраняют это не промах!

т-критерий

Прием, аналогичный расчету доверительных интервалов

 \bar{x}

- 1. Рассчитываем с учетом сомнительных значений
- 2. Рассчитываем стандартное отклонение S
- 3. Задаем уровен $_{\overline{x}}$ значимости β =1-P=1-2 α cm
- 4. Вводим $T_{KP} = |X_{KP}| / S = \Delta X_{KP} / S$ или $\Delta X_{KP} = T_{KP} \cdot S$
- 5.Находим в таблице критический параметр $\tau_{\kappa\rho}$ при заданных $\bar{\chi}_{\bar{\chi}}$ и $\beta_{\bar{\chi}}$
- 6. Запишем $\pm \Delta x = \pm \tau_{KP} S$
- 7. Трактовка: в полученном интервале с заданной доверительной вероятностью могут находиться все значения, кроме промахов!

Сравнение дисперсий

Задача: сравнение с точки зрения воспроизводимости результатов анализа

- методик определения компонента в пробе;
- работы различных лабораторий по одной и той же методике;
- полученных на разных приборах;
- При работе на приборе в различных диапазонах измерений.

Рассматривают:

Дисперсии не совпадают, но несовпадение носит случайный характер, т.к. они характеризуют одну и туже генеральную совокупность с генеральной дисперсией σ^2 . Но S_1^2 и S_2^2 могут существенно отличаться.

<u>Вопрос:</u> является ли различие двух дисперсий случайным (и выборки можно объединять) или значимым (выборки

F-критерий

Основан на распределении Фишера

- 1. Имеют две нормально распределенные выборочные совокупности размером n_1 и n_2 с выборочными дисперсиями S_1 и S_2 и степенями свободы $f_1 = n_1 1$, $f_2 = n_2 1$
- 2. Рассчитывают $F = S_1^2 / S_2^2$ (чтобы F > 1)
- 3. Находят F_{кр} в таблице при заданных параметрах
- 4. Сравнивают: Если F<Fкр, анализы равноточны, и выборки можно обрабатывать совместно.

Критерий Батлера

Используют, если выборок больше двух

Рассчитывают средневзвешенную дисперсию $S_{nk}^2 = \frac{\sum_{i=1}^k f_i S_i^2}{n} = \frac{\sum_{i=1}^k f_i S_i^2}{\sum_{i=1}^k n}$

$$S_{nk}^{2} = \frac{\sum_{i=1}^{k} f_{i} S_{i}^{2}}{n} = \frac{\sum_{i=1}^{k} f_{i} S_{i}^{2}}{\sum_{i=1}^{k} n}$$

Число степеней свободы совокупной выборки

$$f_{nk} = \sum_{i=1}^{k} f_i$$

Рассчитывают

$$B = 2.3(f_{nk}lgS_{nk}^2 - \sum_{i=1}^k f_i lgS_i^2) \qquad C = 1 + \frac{1}{3(k-1)} (\sum_{i=1}^k \frac{1}{f_i} - \frac{1}{f_{nk}})$$

Если B/C< х², дисперсии однородны, выборки объединяют

Критерий Батлера с удовлетворительной точностью применим для выборок с n≥6

Критерий Кохрана

Если объемы выборок равны
 n₁=n₂=n₃=...n_k

Рассчитываю
$$G = S_{max}^2/(S_1^2 + S_2^2 + S_3^2 + \cdots S_n^2)$$

Находят в таблицах G_{кр} при β=0,05 и β=0,01 и f=k-1

Если G<G_{кр}, то выборки однородны и их можно объединять

Сравнение средних. t-критерии Стьюдента

• Анализ одного образца

Серия А. na,
$$S_A^2$$
, $\overline{x_A}$ Серия В. nb, S_B^2 , $\overline{x_B}$

Пусть по F-критерию они значимо не отличаются.

Вопрос: значимо ли различие средних?

Используют t-критерий Стьюдента

Рассчитываю
$$t_{AB} = \frac{\overline{x_A} - \overline{x_B}}{S_{AB}} \sqrt{\frac{n_A \cdot n_B}{n_A + n_B}}$$

Где средневзвешенная дисперси $S_{S_{AB}^2} = \frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}$

Выборочные средни $\overline{\chi_A}$ $\overline{\chi_B}$ различаются значимо, если $t_{AB}>t_{p,f}$ для приняти $\overline{\chi_A}$ до $\overline{\chi_B}$ рительной вероятности р и числа степеней свободы объединенной выборки $f=n_A+n_B$ – 2.

Подтверждение «Нуль-гипотезы»

 Совпадает ли найденное экспериментально
 с истинным значением µ?

Оценка предела обнаружения

- <u>Предел обнаружения</u> это минимальное количество m_{min} (или концентрация С_{min}) определяемого компонента, которое может быть обнаружено с заданной достаточно высокой доверительной вероятностью (0,95 или 0,99).
- <u>Предел обнаружения в единицах аналитического сигнала</u> это минимальный сигнал Y_{min}, который можно с уверенностью отличить от сигнала холостой пробы (фона) Y_{фона}.
- Связь С_{то} с Y_{то} через коэффициент инструментальной чувствительности

$$C_{\min} = (Y_{\min} - Y_{\oplus OHA})/S_{y/c}$$

Как выбрать Ymin?

- <u>Ошибки I рода</u> ошибка «недооткрытия» принятие сигнала определяемого компонента за сигнал фона ошибка пропуска аналитического сигнала определяемого компонента.
- <u>Ошибки II рода</u> ошибки «переоткрытия» принятие сигнала фона за сигнал компонента т.е. обнаружение компонента в пробе, когда его нет.
- <u>Уровень дискриминации</u> сигнала Үд или уровень выбраковки сигнала делит все сигналы на две части:

Ү< Үд – сигнал фона

Ү> Үд – сигнал пробы

Если принять, что сигнал фона и сигнал пробы распределены по одному закону, их стандартные отклонения приблизительно равны, то можно принять

$$Y_{min} - Y_{Д} = Y_{Д} - Y_{фона}$$

І рода — ІІ рода

• Если принять для рассмотрения нормальный закон распределения, то вероятности ошибок I и II рода очень малы

$$P_{I} = (Y_{min} < Y_{J}) = P(Y_{min} < Y_{min} - 3\sigma_{Ymin})$$

$$P_{II} = (Y_{\phi} > Y_{J}) = P(Y_{\phi} > Y_{\phi} + 3\sigma_{Y\phi})$$
0.0014

• Если использовать неравенство Чебышева (при 3σ), то вероятности выше

$$P_{II} = (Y_{min} < Y_{IJ})$$

$$P_{II} = (Y_{cb} > Y_{JJ})$$

$$0,055$$