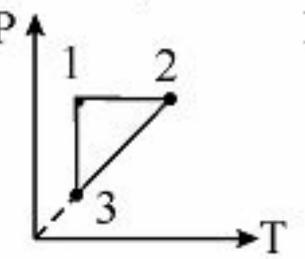
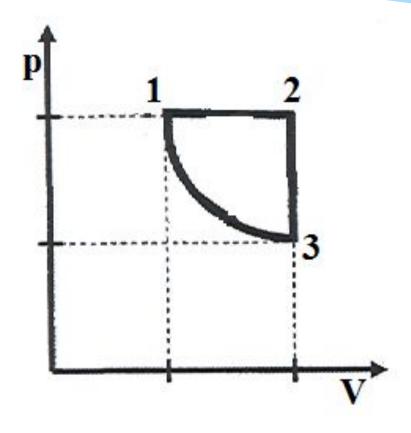
На графике представлен процесс перехода идеального газа постоянной массы из состояния 1-2-3-1. В первом состоянии газ находится под давлением $0.8 \cdot 10^5$ Па, занимая объем 5 м³. Находясь в 3 состоянии он занимает объем в два раза больше чем в первом и имеет температуру 800 К.


Начертите данный процесс в координатах P(V).


Определить количество вещества данного газа.

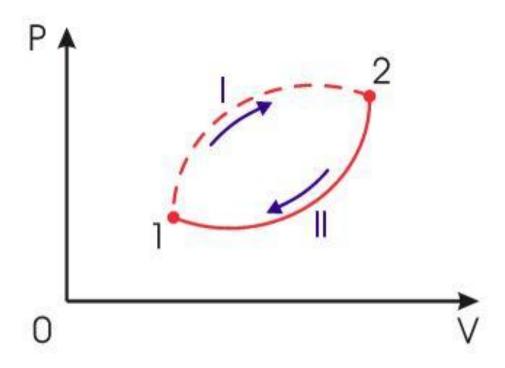
Определить температуру газа и объем во втором состоянии.

Определить объем газа в состоянии 3

Какую работу совершил газ во время изобарного расширения?

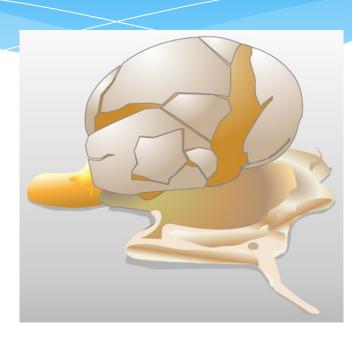
Обратимые и необратимые процессы. Энтропия. Второй закон термодинамики.

Цели урока:


знать формулировку второго закона термодинамики; объяснять смысл второго закона термодинамики; применять второй закон термодинамики при анализе термодинамических процессов.

Критерии оценивания:

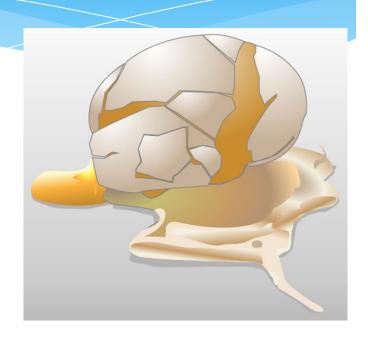
знаю формулировку второго закона термодинамики; объясняю смысл второго закона термодинамики; применяю второй закон термодинамики при анализе термодинамических процессов.


Термодинамический цикл

Круговой процесс на диаграмме (p, V).

Представьте себе. . .

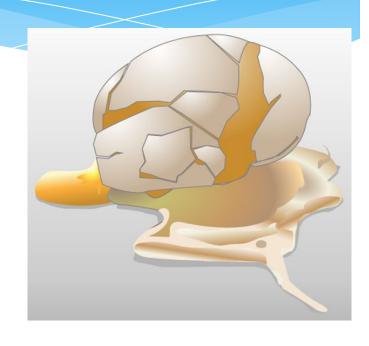
вы ломаете яйцо или случайно разбиваете чашку или тарелку...



...Почему нет?

... Но вы когда-нибудь видели, как сломанное яйцо или разбитая тарелка снова становится целым?

Почему нет? Почему некоторые явления возможны, а другие нет?


Ответ заключается в энтропии

Энтропия

Энтропия определяет неупорядоченность системы - количество различных способов, которыми могут располагаться частицы в системе.

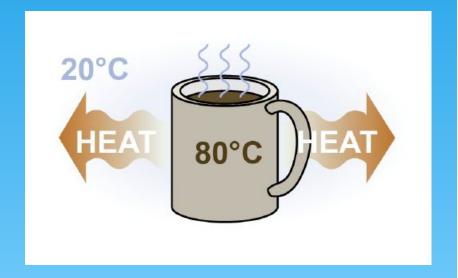
У сломанного яйца больше энтропия, чем у целого яйца.

Энтропия мера неупорядоченности

Энтропия определяет упорядоченость: Твердые тела имеют низкую энтропию, жидкости имеют более высокую энтропию, чем твердые тела, а газы имеют самую высокую энтропию..

Передача тепла

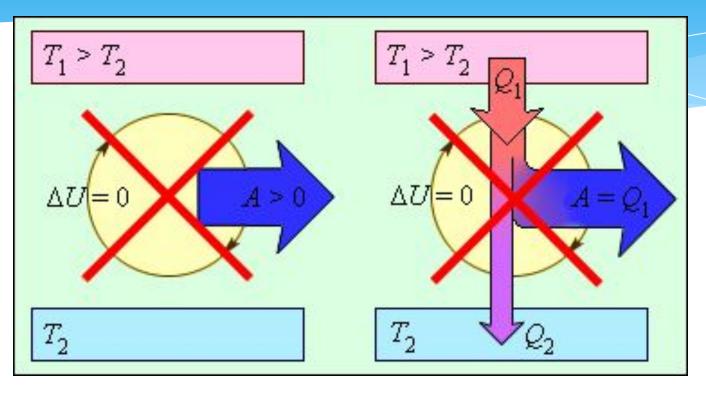
Рассмотрим пример: Горячая чашка кофе охлаждается...


... но холодная чашка кофе никогда самопроизвольно не нагреется.

Необратимые процессы

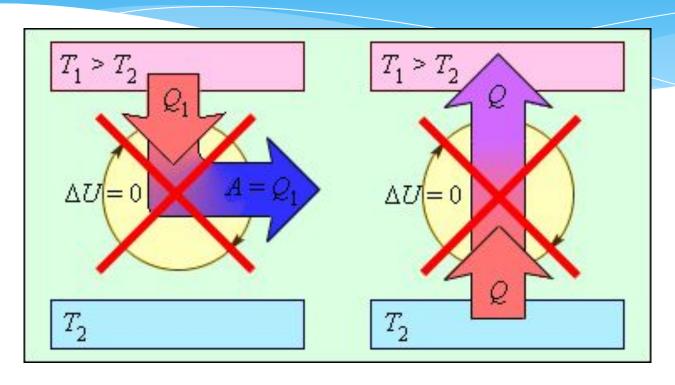
Если бы охлаждение было обратимым, холодный кофе мог бы спонтанно нагреваться, получая тепловую энергию из воздуха Процессы, связанные с потоком тепла, *необратимы*.

Почему?


Второй закон термодинамики

Второй з-н термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе.

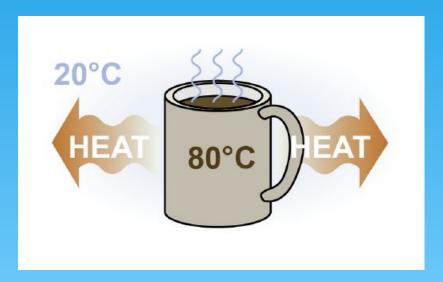
Формулировка Р. Клаузиуса: невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.


Формулировка У. Кельвина: невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Процессы, запрещаемые 1 законом термодинамики

Циклически работающие тепловые машины, запрещаемые первым законом термодинамики: 1 — вечный двигатель 1 рода, совершающий работу без потребления энергии извне; 2 — тепловая машина с коэффициентом полезного действия $\eta > 1$

Процессы, запрещаемые 2 законом термодинамики



Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом: 1 — вечный двигатель второго рода; 2 — самопроизвольный переход тепла от холодного тела к более теплому (идеальная холодильная машина)

Энтропия всегда увеличивается

Полная энтропия замкнутой системы может только увеличиваться или оставаться неизменной.

Это второй закон термодинамики в формулировке Л. Больцмана

Цели урока:

знать формулировку второго закона термодинамики; объяснять смысл второго закона термодинамики; применять второй закон термодинамики при анализе термодинамических процессов.

Критерии оценивания:

знаю формулировку второго закона термодинамики; объясняю смысл второго закона термодинамики; применяю второй закон термодинамики при анализе термодинамических процессов.

«What is your level?»