
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Диаметр, радиус и центр графа

Старший преподаватель кафедры теоретической кибернетики Хадиев Р.М.

Задан граф

	1	2	3	4	5
1	0	1	0	0	0
3	1	0	1	1	0
3	0	1	0	1	0
4	0	1	1	0	1
5	0	0	0	1	0

Ввод данных

```
int main() {
 int G[100][100], // граф транспортной сети
    R[100][100], // минимальные расстояния
                 // между вершинами
    I,j,n, // n – число вершин
 cin >> n;
 for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
    cin >> G[i][j];
```

Определение длины кратчаиших

```
int r[100]={0}, // 0 – расстояние не определено
   ob[100], // обработанные вершины
For (n p=1; n p<n; n p++) {
 Int a=1, // вершина из ob , которая обрабатывается
    р=2; // пустое место для записи новых вершин
 r[n_p]=1; // кратчайший путь в n_p - 1
 ob[1]=n p; //
 while a<p do {
  for (i=0; i<n; i++) // ищем связанные с ob[a]
   if (G[i][ob[a]]==1 & r[i]==0) { //необработанные вершины
     r[i]=r[ob[a]]+1;
     ob[++p]=I;
  a++;
 for(i=1; i<=n; i++) R(n p][i]=r[i];
```

Опреоеление.

Диаметр связного графа – максимально возможное расстояние между двумя его вершинами.

Для решения задачи строим матрицу кратчайших расстояний между

	1	2	3	4	5
1	0	1	2	2	3
2	1	0	1	1	2
2	2	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

Диаметр - 3

Определение диаметра графа

```
int D=0;
For(i=1; i<=n; i++)
For(i=1; i<=n; i++)
D:= max(D,R[i][j]);
Cout << "Диаметр графа = " << D;
```

Опреоеление.

Радиус связного графа – максимально возможное расстояние между двумя его вершинами.

Для решения задачи строим матрицу кратчайших расстояний между

	1	2	3	4	5
1	0	1	2	2	3
3	1	0	1	1	2
3	2	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

Диаметр - 3

Определение радиуса графа

```
int Rad=0;
for(i=1; i<=n; i++) {
 int M=0;
 for(i=1; i<=n; i++)
  M:= max(M,R[i][j]);
 if (i==1) Rad=M;
 else Rad=min(Rad,M);
cout << "Радиус графа = " << Rad;
```

Определение.

Центр графа – вершина, максимальное расстояние от которого до любой другой вершины является наименьшим из всех возможных.

Для решения задачи строим матрицу кратизичну расстоящий между вершинами

ונווארואיזיאי אוווואוביווביא					
	1	2	3	4	5
1	0	1	2	2	3
2	1	0	1	1	2
3	2	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

Центр - 2,3 или 4

Определение центра графа

```
// Rad – радиус графа
for(i=1; i<=n; i++) {
 int M=0;
 for(i=1; i<=n; i++)
   M:= max(M,R[i][j]);
 if (Rad==M
  cout << "Центр графа = " << i;
```