
Алкены. Химические свойства алкенов

Общее определение

Алкены-углеводороды нециклического строения, в моллекулах которых имеется одна двойная связь. Атомы углерода, образующие двойную, связь находятся в состоянии sp² - гибридизации. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации и имеют валентный угол 120°.

Общая формула алкенов C_nH_{2n} . Ковалентная связь, образованная за счет пепкрывания электронных облаков вдоль линии, соединяющей ядра атомов, называется σ -связь. Ковалентная связь, образованная за счет бокового перекрывания негибридных р-орбиталей, называется π -связь. Двойная связь в алкенах включает в себя одну σ - и одну π -связь.

Наименование соединения	Брутто- формула	Физическое состояние	T _m °C	Тып°С
Этен (этилен)	C_2H_4	газ	-169,1	-103,7
Пропен (пропилен)	C_3H_6	газ	-187,6	-47,7
Бутен-1 (бутилен)	C ₄ H ₈	газ	-185,3	-6,3
Цис-бутен-2	C ₄ H ₈	газ	-138,9	3,7
Транс-бутен-2	C_4H_8	газ	-105,5	0,9
2-метилпропен (изобутилен)	C ₄ H ₈	газ	-140,4	-7,1
Пентен-1 (пентилен)	C ₅ H ₁₀	жидкость	-165,2	30,1
Гексен-1 (гексилен)	C ₆ H ₁₂	жидкость	-139,8	63,5
Гептен-1 (гептилен)	C7H14	жидкость	-119,1	93,6
Октен-1 (октилен)	C ₈ H ₁₆	жидкость	-101,7	121,3
Нонен-1 (нонилен)	C ₉ H ₁₈	жидкость	-81,4	146,8
Децен-1 (децилен)	C ₁₀ H ₂₀	жидкость	-66,3	170,6

Химические свойства алкенов

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов — платины, палладия, никеля. Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция — дегидрирование.

$$\mathbf{CH_3}\mathbf{-CH_2}\mathbf{-CH} = \mathbf{CH_2} + \ \mathbf{H_2} \xrightarrow{\quad \mathbf{Pt} \quad} \mathbf{CH_3}\mathbf{-CH_2}\mathbf{-CH_2}\mathbf{-CH_3}$$

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену.

3. Гидрогалогенирование (присоединение галогеноводорода). При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

$$\begin{array}{c} \mathrm{CH_{3}}\text{--}\mathrm{CH}\text{--}\mathrm{CH}_{2} + \mathrm{HBr} \rightarrow \mathrm{CH}_{3}\text{--}\mathrm{CHBr}\text{--}\mathrm{CH}_{3} \\ \mathrm{пропен} \end{array}$$

4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

$$CH_2 = CH_2 + H_2O \xrightarrow{t^\circ, H_3PO_4} CH_3 - CH_2OH$$

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов. Условием является УФ-свет.

$$nCH_2 = CH_2 \xrightarrow{y_{\Phi\text{-cser, R}}} (\dots -CH_2 - CH_2 - \dots)$$

1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О.

$$\begin{aligned} \mathrm{CH_2}\!=\!&\mathrm{CH_2}+3\mathrm{O_2}\to2\mathrm{CO_2}^\uparrow+2\mathrm{H_2O}\\ \mathrm{B\ oбщем\ виде:}\,\mathrm{C}_n\mathrm{H}_{2n}+\frac{3n}{2}\mathrm{O_2}\to n\mathrm{CO_2}^\uparrow+n\mathrm{H_2O} \end{aligned}$$

5.Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов)

$$ext{CH}_2 = ext{CH}_2 + [ext{O}] + ext{H}_2 ext{O} o ext{CH}_2 - ext{CH}_2 \\ ext{OH} ext{OH} ext{OH} \\ ext{этилен} ext{ОН} ext{OH} ext{ОН} \\ ext{этиндиол-1,2} \\ ext{(этиленгликоль)} ext{}$$

Спасибо за внимание

