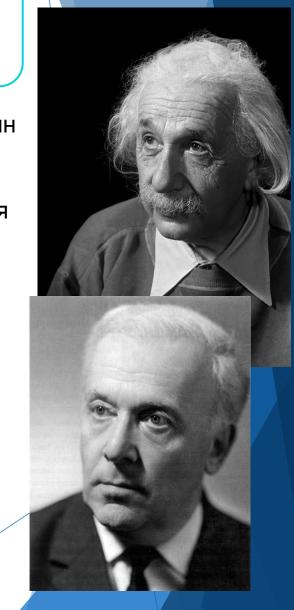

Лазеры

Подготовила: Ефанина А.Н. (11Б)


Предпосылки.

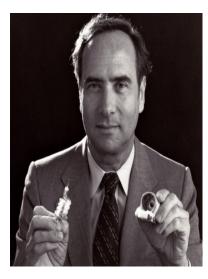
1990г. – Макс Планк выдвинул идею о том, что вещество и поглощает свет отдельными порциями - квантами

1917г. – Альберт Энйштейн предсказал возможность индуцированного (вынужденного) излучения света атомами.

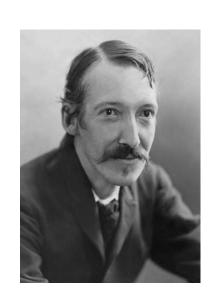
1940г. – В.А. Фабрикант указал на возможность использования явления вынужденного излучения для усиления электромагнитных волн.

История создания.

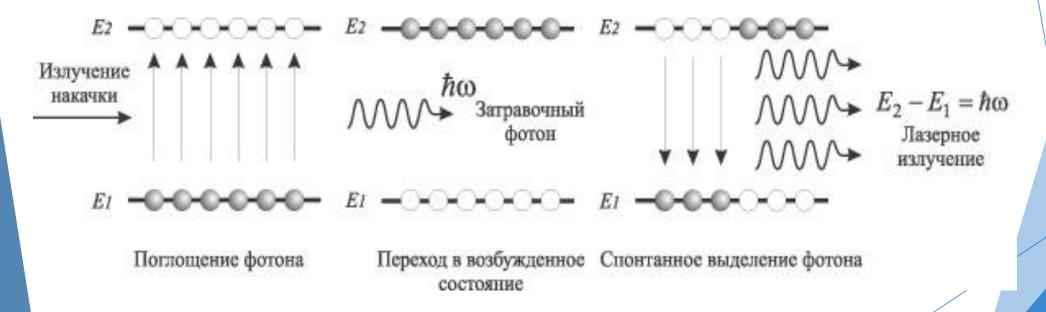
► 1954г. – советские академики Н.Г. Басов и А.М. Прохоров и американский физик Ч. Таунс разработали «лазер» - мощный излучатель радиоволн. Эта выдающаяся научная работа была отмечена Нобелевской премией по физике.


История создания.

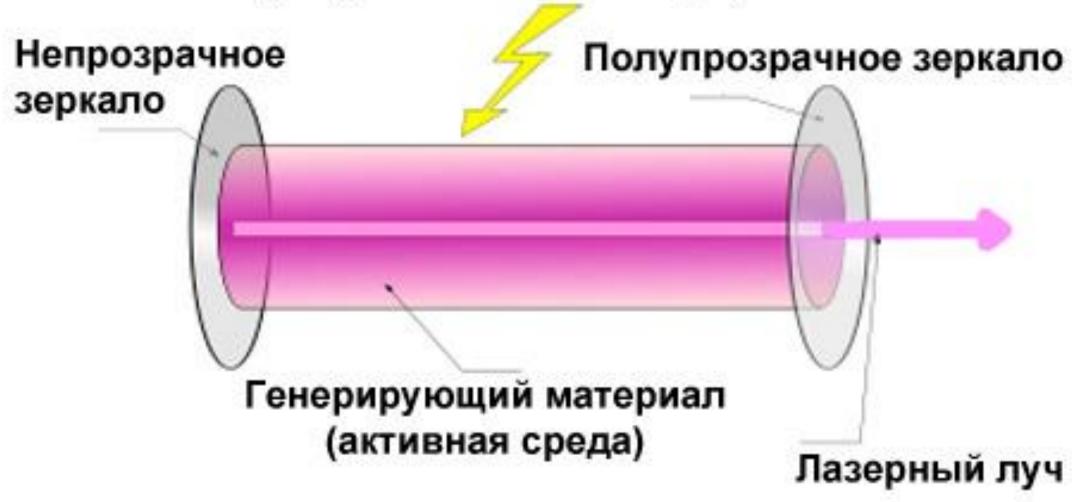
1960г. – американский физик Теодор Мейман сконструировал первый лазер на рубине с длиной волны в 0,69 мкм.


Спустя полгода заработал инфракрасный лазер на фториде кальция с добавкой ионов урана, построенный Питиримом Сорокиным и Миреком Стивенсоном.

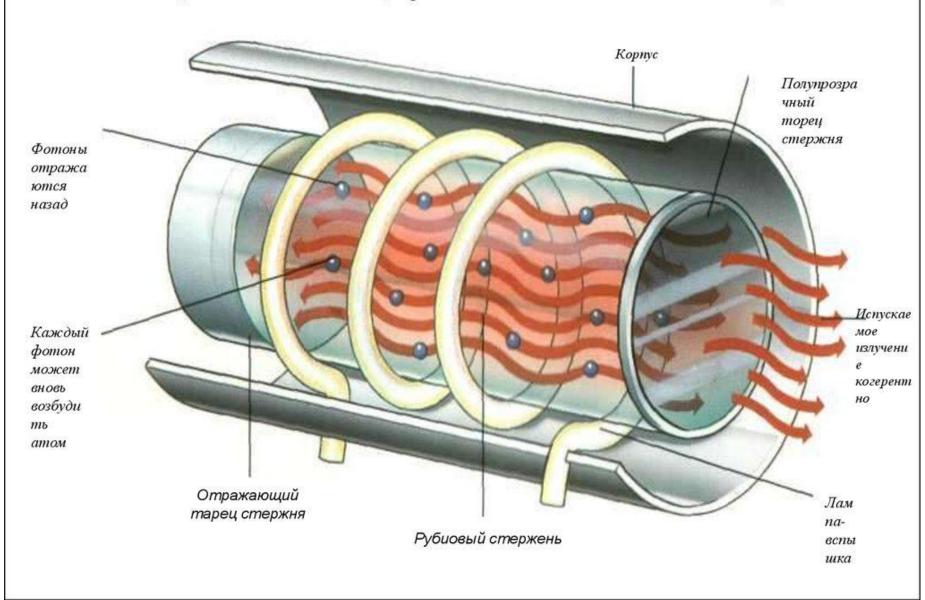
В декабре исследователи Али Джаван, Уильям Беннетт и Дональд Хэрриот продемонстрировали первый в мире газовый лазер на смеси гелия и неона.



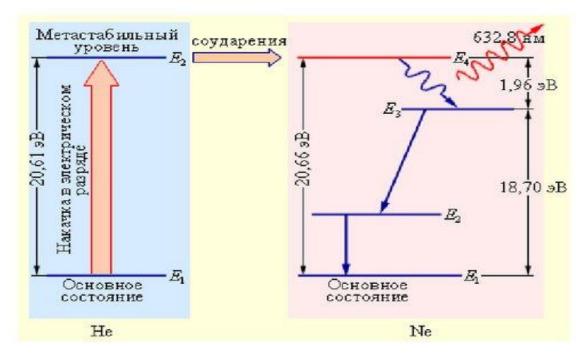
Основные компоненты лазера.

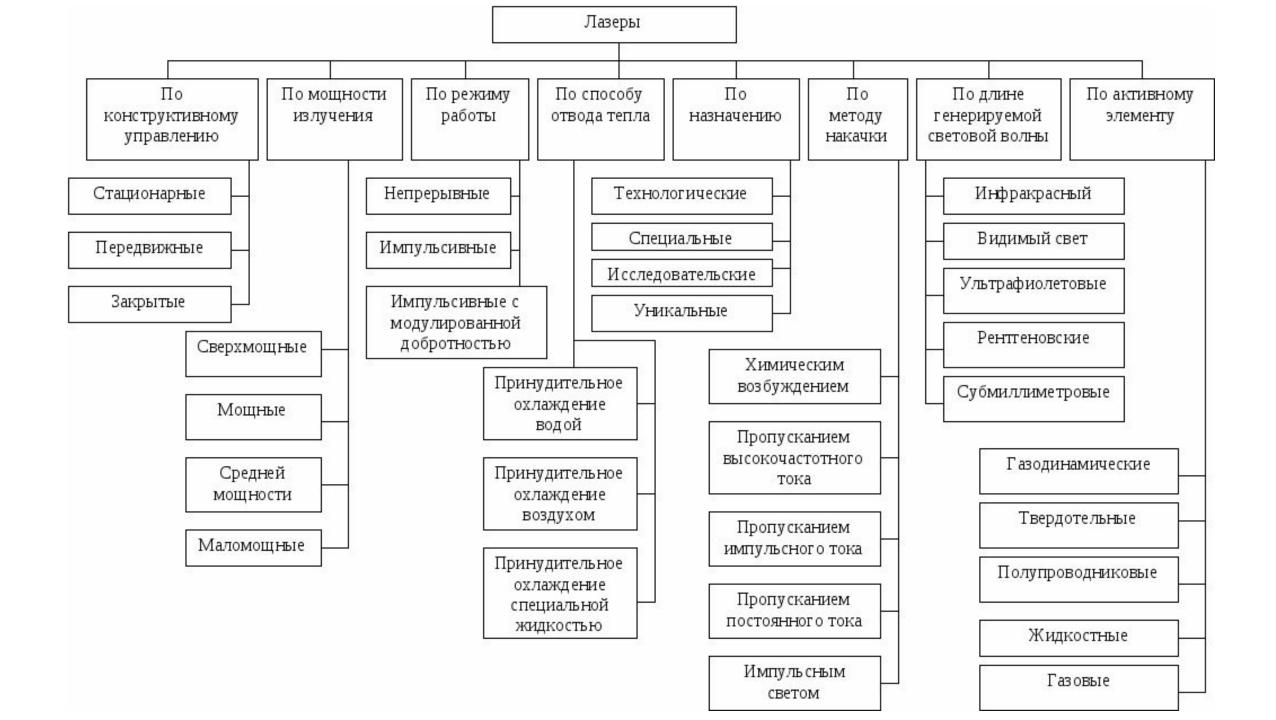

- 1. Активная среда в ней создается состояние с инверсной заселенностью
- 2. Система накачки устройство для создания инверсии в активной среде.
- 3. Оптический резонатор устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок.

Принцип работы лазера.


Лазеры создают когерентное излучение очень большой мощности. Необходимое условие когерентного излучения – создание инверсии заселенностей энергетических уровней.

Источник напряжения (энергия накачки лазера)




Устройство рубинового лазера

Устройство и принцип работы гелийнеонового лазера

Свойства лазерного излучения

- 1) Лазеры способны создавать пучки света с очень малым углом расхождения.
- Все фотоны лазерного излучения имеют одинаковую частоту (монохроматичность) и одно и то же направление (согласованность).
- 3) Лазеры являются мощными источниками света (до 10⁹ Вт, т.е. больше мощности крупной электростанции).

Применение лазеров.

Наука.	Вооружение.	Медицина.	Техника и быт.
Спектроскопия Фотохимия Измерение расстояний Намагничивание Интерферометрия Охлаждение Голография Термоядерный синтез	«Лазерное оружие» Целеуказатели Лазерный прицел Лазерное наведение	Скальпель Точечная сварка тканей Хирургия Диагностика Удаление опухолей	Резка, сварка, маркировка, гравировка Проигрыватели, принтеры, дисплеи Фотолитография, считывание штрихкода Оптическая связь, системы навигации Манипуляция микрообъектами

Практика.

I I DD. Жидкий лазер, работающий в импульсном режиме, за один импульс, длящийся 1 мкс, излучает 0,1 Дж лучистой энергии. Расходимость излучения 2 мрад. Найти плотность потока излучения на расстоянии 6 м от лазера и сравнить с плотностью потока излучения Солнца, падающего на Землю, равного (без учета поглощения атмосферой) 1,36 кВт/м².

Решение. Плотность потока энергии, излучаемой жидкостным лазером, равна отношению энергии лазера ΔE к длительности импульса т и к площади поперечного сечения пучка света ΔS :

$$I = \frac{\Delta E}{\tau \Delta S}$$
.

В свою очередь, площадь поперечного сечения пучка на расстоянии R от лазера равна:

$$\Delta S = \pi/4 \cdot (R\sigma)^2,$$

где σ — расходимость пучка света.

В итоге получим

$$I = \frac{\Delta E}{\tau \cdot \pi/4 \cdot (R\sigma)^2}.$$

Вычисления:

Ответ: $I = 842 \text{ MBr/m}^2$; $I/I_C = 6.5 \cdot 10^5$.

1154. Лазер, работающий в импульсном режиме, потребляет мощность 1 кВт. Длительность одного импульса 5 мкс, а число импульсов в 1 с равно 200. Найти излучаемую энергию и мощность одного импульса, если на излучение идет 0,1% потребляемой мощности.

Решение. Если P_0 — средняя электрическая мощность лазера, имеющего КПД η , то средняя мощность излучения лазера равна:

$$P_1 = \eta P_0$$
.

Средняя мощность излучения, в свою очередь, равна произведению энергии E импульса на число n импульсов в одну секунду:

$$P_1 = nE$$
.

Тогда

$$E=\frac{\eta P_0}{n}.$$

Мощность одного импульса равна:

$$P=\frac{E}{\tau}=\frac{\eta P_0}{n\tau},$$

где т — длительность импульса.

Вычисления:

$$E = \frac{10^{-3} \cdot 10^3 \text{ Вт}}{200 \text{ c}^{-1}} = 5 \cdot 10^{-3} \text{Дж};$$

$$P = \frac{10^{-3} \cdot 10^{3} \text{ Bt}}{200 \text{ c}^{-1} \cdot 5 \cdot 10^{-6} \text{ c}} = 10^{3} \text{ Bt} = 1 \text{ kBt}.$$

Ответ: E = 5 мДж; P = 1 кВт.

¹ Расходимость излучения — это плоский угол осевого сечения конуса излучения.

Источники.

- 1. https://pptcloud.ru/fizika/lazery-fizika
- 2. https://ppt4web.ru/fizika/lazer.html
- 3. https://infourok.ru/prezentaciya_na_temu_lazery-347287.htm
- 4. https://yandex.ru/images/search?text=классификация%20лазеров&parent-reqid=1548697 593623366-1510889219391580861438397-man1-3548
- 5. https://yandex.ru/images/search?text=в%20a%20фабрикант
- 6. https://yandex.ru/images/search?text=лазеры%20задачи%20по%20физике&lr=1091