
Проверка домашнего задания

Задача.

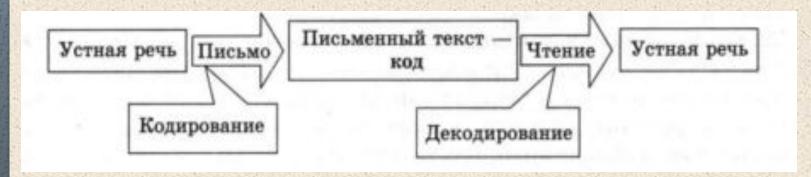
Из каждого из пунктов A, B, C и D имеется путь в остальные пункты, расстояния между которыми известны: AB=7, AC=5, AD=4, BC=6, BD=1, CD=8. Необходимо, начиная от одного из этих пунктов и побывав в каждом из пунктов только один раз, вернуться в исходный пункт. Какой маршрут надо выбрать, чтобы путь оказался кратчайшим?

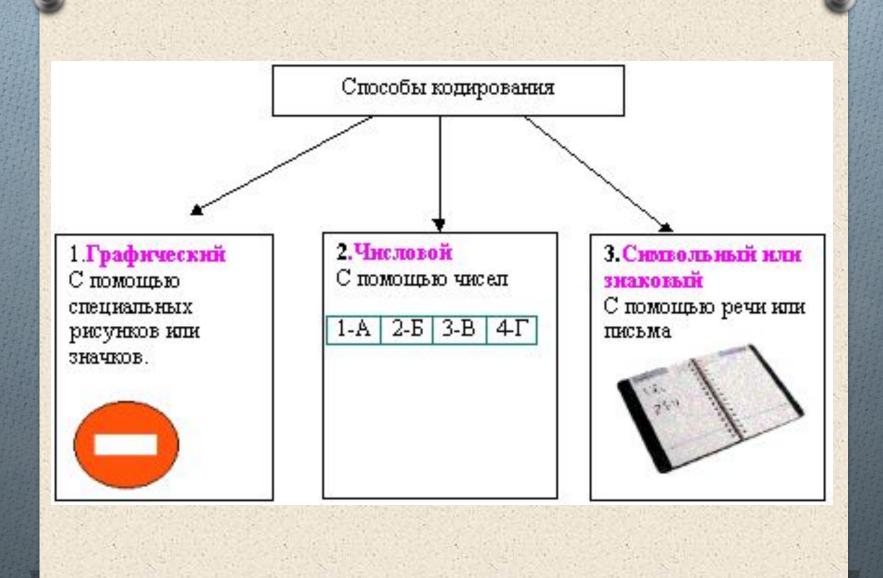
Решение. Соответствующие пункты и схему путей между ними можно показать при помощи взвешенного графа. Как видите, здесь имеется 6 возможных циклов: ABCDA, ACBDA, ABDCA, ACDBA, ADBCA, ADCBA. Их длина, соответственно, равна: 25, 16, 21, 21, 16, 25.

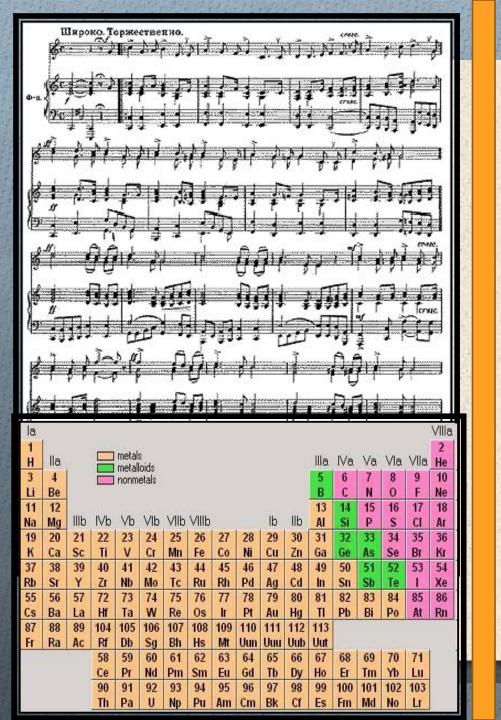
Таким образом, самыми короткими будут маршруты ACBDA и ADBCA.

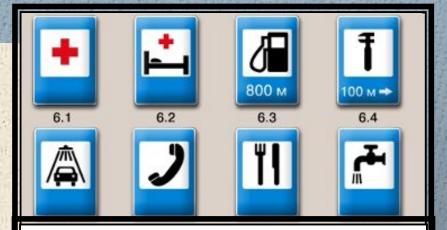
Урок № 3

Представление информации


Кодирование информации




Кодирование – это процесс представления информации в форме, удобной для её хранения и передачи.


Текст, записанный на русском языке, можно рассматривать как способ кодирования речи с помощью графических элементов.

Декодирование – это процесс, обратный кодированию (расшифровка)

погоны старших офицеров

Полковник (повседневная форма одежды)

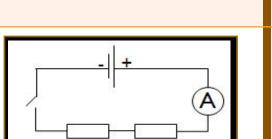
Подполковник (парадная форма одежды)

Майор (парадная форма одежды, ВВС, ВДВ)

Капитан 1 ранга (парадная форма одежды)

Капитан 2 ранга (парадная форма одежды)

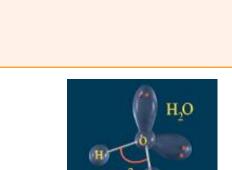
Капитан 3 ранга (повседневная форма одежды)


Языки бывают:

- естественные (разговорные: русский, английский и др.);
- формальные (языки какой-нибудь профессии или области знаний: математическая символика, ноты, языки программирования)

Формальный язык

Естественный язык


Охота на дичь

Электрическая цепь

Обозначение своей территории

Соединение молекул воды

(10+11+12+13+14+15)*19

Эмоции Математическое выражение

Представьте информацию

Информация	Естественный язык	Формальный язык					
Нахождение площади треугольника							
Правило дорожного движения							
Призыв о помощи							

Способы кодирования информации

Для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств.

Если надо записать текст в темпе речи — используем стенографию; если надо передать текст за границу — используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, — записываем его по правилам грамматики русского языка.

«Здравствуй, Саша!» «Zdravstvuy, Sasha!»

Шифрование сообщения

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа.

В таком случае секретный текст шифруется.

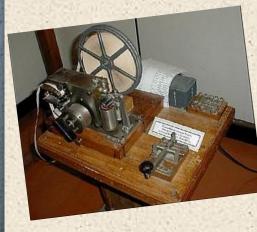
Шифрование — это тоже кодирование, но с засекреченным методом, известным только источнику и адресату.

Методами шифрования занимается наука под названием криптография.

Технические способы кодирования информации

Оптический телеграф Шаппа

В <u>1792 году</u> во Франции Клод Шапп создал систему передачи визуальной информации, которая получила название «*Оптический телеграф*».


В простейшем виде это была цепь типовых строений, с расположенными на кровле шестами с подвижными поперечинами, которая создавалась в пределах видимости одно от другого. Шесты с подвижными поперечинами — семафоры — управлялись при помощи тросов специальными операторами изнутри строений.

Шапп создал специальную таблицу кодов, где каждой букве алфавита соответствовала определенная фигура, образуемая Семафором, в зависимости от положений поперечных брусьев относительно опорного шеста.

Система Шаппа позволяла передавать сообщения на скорости два слова в минуту и быстро распространилась в Европе. В Швеции цепь станций оптического телеграфа действовала до 1880 года.

СЭМЮЭЛЬ МОРЗЕ

Телеграф

Телеграф - средство передачи информаии на расстояние, изобретенный в <u>1837 году</u> американцем Сэмюэлем Морзе.

Телеграфное сообщение — это

последовательность электрических сигналов, передаваемая от одного телеграфного аппарата по проводам к другому телеграфному аппарату.

Эти технические обстоятельства привели Морзе к идее использования всего двух видов сигналов — короткого и длинного — для кодирования сообщения, передаваемого по линиям телеграфной связи.

Азбука Морзе

A • -	Л•-••	Ц-•-•
Б-••	M	4•
B •	H — •	Ш
Γ•	0	Щ•-
Д — • •	П ••	Ъ••-
E •	P • - •	Ы — • — —
Ж•••-	C • • •	b - • • -
3 • •	T —	3 • • - • •
И••	У • • −	Ю••
Й • −−−	Φ••-•	Я • - • -
K – • –	X • • • •	

Самым знаменитым телеграфным сообщением является сигнал бедствия «SOS» (Save Our Souls - *cnacume наши души*).

Вот как он выглядит в коде азбуки Морзе:

Азбука Морзе

1	•	9	
2	• •	0	
3	• • • — —	Точка	• • • • •
4	• • • • —	Запятая	• - • - • -
5	• • • •	/	_ • • - •
6	• • •	?	• • • •
7	••	!	•
8		@	• • -

Неравномерность кода

Характерной особенностью азбуки Морзе является переменная длина кода разных букв, поэтому код Морзе называют **неравномерным кодом**.

Буквы, которые встречаются в тексте чаще, имеют более короткий код, чем редкие буквы. Это сделано для того, чтобы сократить длину всего сообщения. Но из-за переменной длины кода букв возникает проблема отделения букв друг от друга в тексте. Поэтому для разделения приходится использовать паузу (пропуск). Следовательно, телеграфный алфавит Морзе является троичным, т.к. в нем используются три знака: точка, тире, пропуск.

Условие Фано

Для того, чтобы сообщение, записанное с помощью неравномерного по длине кода, однозначно декодировалось, достаточно, чтобы никакой код не был началом другого (более длинного) кода.

Пример неравномерного кода, выполняющего условие Фано:

0	Л	В
0	10	11

Тогда слово «<mark>ОЛОВО</mark>» кодируется как «1100110» и имеет только один вариант дешифровки.

Условие Фано

Для того, чтобы сообщение, записанное с помощью неравномерного по длине кода, однозначно декодировалось, достаточно, чтобы никакой код не был началом другого (более длинного) кода.

Пример неравномерного кода, выполняющего условие Фано:

0	Л	В
0	10	11

Тогда слово «<mark>ОЛОВО</mark>» кодируется как «1100110» и имеет только один вариант дешифровки.

Пример №1 (прямое *условие Фано* выполняется корректно). Известны коды следующих символов: A, B, C, D.

Символ	Α	В	CC	D
Код символа	00	010	1011	110

Проверим код буквы A=00. Как видно, ни один другой символ не начинается на связку битов оо. Аналогичные умозаключения можно сделать, если провести анализ остальных букв алфавита, т е букв B, C и D. В данном примере условие Фано выполняется.

Пример №2 (прямое условие Фано нарушено). Даны неравномерные коды символов A, B, C, D.

Символ	Α	В	С	D	
Код символа	00	01	101	0110	

Очевидно, что в данном случае имеется нарушение прямого условия Фано! Давайте рассмотрим пару элементов множества: В, D. Начало кода буквы D на 100% совпадает с полным кодом буквы В.

Такие кодовые слова практически невозможно однозначно декодировать.

Обратное условие Фано

Обратное условие Фано также является достаточным условием однозначного декодирования неравномерного кода. В нём требуется, чтобы никакой код не был окончанием другого (более длинного) кода.

Для возможности однозначного декодирования достаточно выполнения <u>одного</u> из условий — или прямого, или обратного.

Заметим, что существуют варианты неравномерного кодирования, для которых оба условия нарушены, и тем не менее они однозначно декодируются.

Телеграф Бодо

Равномерный телеграфный код был изобретен французом Жаном Морисом Бодо в 1872 г. В нем использовалось всего два разных вида сигналов. Не важно, как их назвать: точка и тире, плюс и минус, ноль и единица. Это два отличающихся друг от друга электрических сигнала. Длина кода всех символов одинаковая и равна пяти. В таком случае не возникает проблемы отделения букв друг от друга: каждая пятерка сигналов — это знак текста. Поэтому пропуск не нужен.

Код называется равномерным, если длина кода всех символов равна.

Код Бодо — это первый в истории техники способ двоичного кодирования, информации. Благодаря этой идее удалось создать буквопечатающий телеграфный аппарат, имеющий вид пишущей машинки. Нажатие на клавишу с определенной буквой вырабатывает соответствующий пятиимпульсный сигнал, который передается по линии связи.

В честь Бодо была названа единица скорости передачи информации — бод.

В современных компьютерах для кодирования текста также применяется равномерный двоичный код.

Двоичное кодирование в компьютере

Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: **0** и **1**. *Эти два символа принято называть двоичными цифрами или битами*.

С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.

Почему двоичное кодирование

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

- 0 отсутствие электрического сигнала;
- 1 наличие электрического сигнала.

Эти состояния легко различать. Недостаток двоичного кодирования — длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

Домашнее задание

- 1. Выучить конспект
- 2. п. 2 читать, отвечать на вопросы

Для кодирования одного символа требуется один байт информации.

1 символ — 1 байт (8 бит)

Учитывая, что каждый бит принимает значение 1 или 0, получаем, что с помощью 1 байта можно закодировать 256 различных символов.

N – мощность алфавита

$$2^8 = 256$$

I – информационный вес

Таблица кодировки

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды)

Таблица кодировки <u>ASCII</u> является стандартной, и ее понимают абсолютно все программы, работающие с текстами.

Кодовая таблица ASCII

American Standard Code for Information Interchange

Maria A		_		_	-	_	_		_	_					_
sp	1	"	#	\$	%	&		()	*	+	,	-		1
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	41
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
48	43	50	51	52	53	54	55	56	57	58	50	60	61	62	6
@	A	В	C	D	E	F	G	Н	1	J	K	L	М	N	C
64	65	66	67	68	69	70	Ħ	12	13	74	15	76	77	18	15
Р	Q	R	S	T	U	٧	W	X	Y	Z]	١]	^	_
80	81	82	83	84	85	86	87	88	89	30	91	32	93	94	35
	a	b	C	d	e	f	g	h	i	i	k	1	m	n	0
56	97	- 38	55	100	101	102	100	104	105	106	101	108	103	110	- 11
p	q	r	S	t	u	٧	w	x	у	z	1		}	~	
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	

коды от 0 до 31

коды от 32 до 127

коды от 128 до 255

функциональные клавиши

буквы английского алфавита, знаки математических операций и

национальный алфавит

Таблица кодировки *Unicode*

Стандарт кодирования Unicode отводит на каждый символ 2 байта, что позволяет закодировать многие алфавиты в одной таблице.

 $N=2^{1}=2^{16}=65.536$

В настоящее время существует **5 кодовых таблиц** для русских букв (Windows, MS-DOS, KOИ-8, Mac, ISO), поэтому тексты, созданные в **од**ной кодировке, не будут правильно **от**ображаться в другой.

Символ	Windows	MS-DO S	КОИ-8	Mac	ISO	Unicode
A	192	128	225	128	176	1040
						1042
						1052
						1069
R						1103
						7

Hpunep

Декодировать текст с помощью кодовой таблицы ASCII:

99 111 109 112 117 116 101 114 computer

ПРАКТИЧЕСКАЯ РАБОТА

Цель: научиться определять числовые коды символов и вводить символы с помощью числовых кодов.

Работа в текстовом редакторе

Запустите текстовый редактор WS Word. Удерживая клавишу «ALT», наберите коды на дополнительной цифровой клавиатуре:

152 170 174 171 160

Какое слово получили?

Домашнее задание:

 п. 3.1; Произвести кодирование стихотворения из 4-х строк (до 100 символов)

> До свидания. Урок окончен.