

Lecture 7 REGULATION OF ENZYMESACTIVITY AND METABOLIC PATHWAYS. MEDICAL IMPLEMENTATION OF ENZYMES

Dr. Elena O. Polovinkina 2020

Enzymes phosphorylation/ dephosphorylation

The scheme of activation of pepsinogen – partial proteolysis

Dissociation of protein kinase A -Protein-protein interactions

Regulation of the metabolic pathways

The key enzymes in the metabolic pathways usually catalyze:

- ▶ irreversible (\rightarrow) or partially reversible reactions;
- ► the slowest reactions;

► reactions at the beginning of the metabolic pathways or in branching places of metabolic pathways.

Scheme of regulation of enzyme activity by feedback inhibition

Clinical applications of enzymes

УНИВЕРСИТЕТ ЛОБАЧЕВСКОГО нижегородский государственный университет

- enzyme diagnostics;
 - enzymopathology:
 - accumulation of substrate reaction. For example, phenylalanine in phenylketonuria, free bilirubin in physiological jaundice of the newborn, some fats in diseases of lysosomal accumulation (lipidosis);
 - product deficiency. For example, melanin in albinism, catecholamines in parkinsonism;
 - both features simultaneously, as in glycogenosis, accompanied by hypoglycemia with an excess of glycogen in the liver;
- enzyme therapy;
- use of enzymes in medical technology and industry (Enzyme immunoassay: enzyme-antigen-antibody);
- ► use of enzyme inhibitors:
 - natural and artificial poisons
 - insecticides
 - herbicides
 - disinfectants such as triclosan
 - chemotherapy:
 - competitive inhibitors (Sulfonamides)
 - competition at the active site (treatment of methanol intoxication)
 - irreversible inhibition (nonsteroidal anti-inflammatory drugs –aspirin)
 - Anti-cancer drugs (Methotrexate analogue of folic acid)

Principle serum enzymes used in clinical diagnosis

Serum Enzyme	Major Diagnostic Use
Aminotransferases	Myocardial infarction Viral hepatitis
Aspartate aminotransferase	
Alanine aminotransferase	
Amylase	Acute pancreatitis
Ceruloplasmin	Hepatolepticular degeneration
Creatine kinase	Muscle disorders and myocardial
	infarction
г-Glutamyl transpeptidase	Various liver diseases
Lactate dehydrogenase (isozymes)	Myocardial infarction
Lipase	Acute pancreatitis
Phosphatase, acid	Metastatic carcinoma of the prostate
Phosphatase, alkaline (isozymes)	Various bone disorders, obstructive
	liver diseases

Introduction to nucleic acids

Role of nucleotides:

-the energy currency in metabolic transactions (ATP, GTP),

-the essential chemical participants in signals transduction paths of hormones and other extracellular stimuli in the of cells

-the structural components of enzyme cofactors and metabolic intermediates -the molecular repositories of genetic information.

Gene is a segment of a DNA molecule that contains the information required for the synthesis of a functional biological product, whether protein or RNA.

Ribosomal RNAs (rRNAs) are components of ribosomes Messenger RNAs (mRNAs) are intermediaries, carrying genetic information from one or a few genes to a ribosome Transfer RNAs (tRNAs) are adapter molecules that faithfully translate the information in mRNA into a specific sequence of amino acids.

Major purine and pyrimidine bases of nucleic acids

Deoxyribonucleotides and ribonucleotides of nucleic acids

The nucleotide units of DNA (a) are usually symbolized as A, G, T, and C, sometimes as dA, dG, dT, and dC; those of RNA (b) as A, G, U, and C..

In their free form the deoxyribonucleotides are commonly abbreviated dAMP, dGMP, dTMP, and dCMP; the ribonucleotides, AMP, GMP, UMP, and CMP.

Some minor purine and pyrimidine bases

Some adenosine monophosphates

Adenosine 5'-monophosphate

Adenosine 2'-monophosphate

Adenosine 3'-monophosphate

Adenosine 2',3'-cyclic monophosphate

3,5-cyclic monophosphate (cAMP) guanosine 3,5-cyclic monophosphate (cGMP)

Phosphodiester linkages in the covalent backbone of DNA and RNA

oligonucleotide

The backbone of alternating pentose and phosphate groups in both types of nucleic acid is highly polar. The 5 end of the macromolecule lacks a nucleotide at the 5 position, and the 3 end lacks a nucleotide at the 3 position.

5-phosphate group of one nucleotide unit is joined to the 3-hydroxyl group of the next nucleotide, creating a <u>phosphodiester linkage</u>

Some simpler representations of this pentadeoxyribonucleotide are: pA-C-G-T-AOH, pApCpGpTpA, and pACGTA

Hydrogen-bonding patterns in the base pairs defined by Watson and Crick

Stacking interactions:

- hydrophobic
- van der Waals
- dipole-dipole interactions

Thymine

Francis Crick,