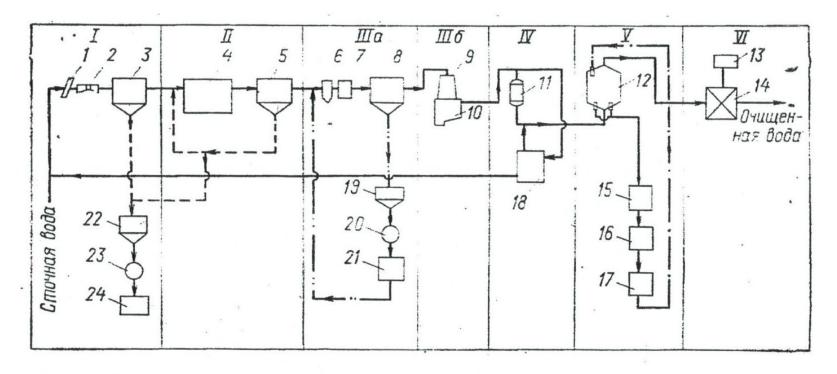

Кафедра «Химическая технология и промышленная экология»

## Технологические схемы доочистки биологически очищенных стоков

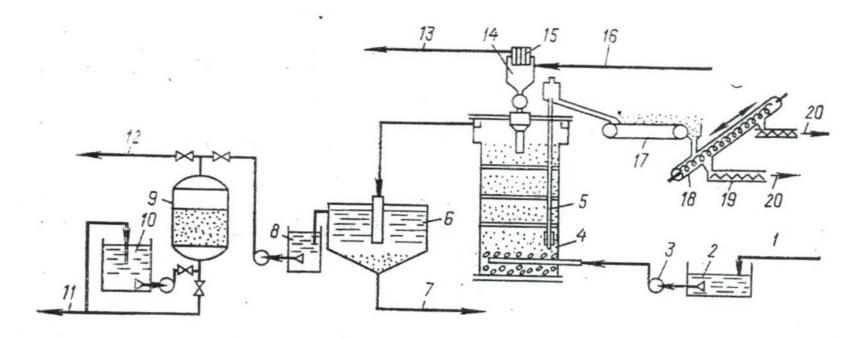

## Методы доочистки биологически очищенных стоков

- Фильтрация
- Физико-химическая обработка (коагуляция)
- Адсорбция
- Ионный обмен



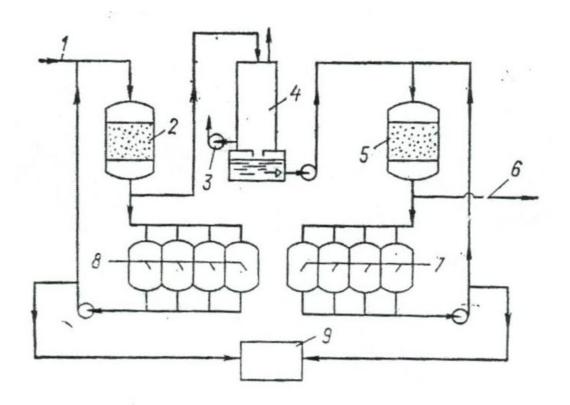
Технологическая схема очистки сточных вод с доочисткой на фильтровальных сооружениях:

1— механическая очистка; 11— биологическая очистка; 111— доочистка фильтрованием; 1— решетка; 2— песколовка; 3— первичный отстойник; 4— аэротенк; 5— вторичный отстойник; 6— регенератор активного ила; 7— сетчатый барабанный фильтр; 8— фильтр с зернистой загрузкой; 9— установка для хлорирования; 10— контактный резервуар; 11— резервуар сброса промывных вод; 12— резервуар-накопитель промывной воды; 13— песковые площадки.



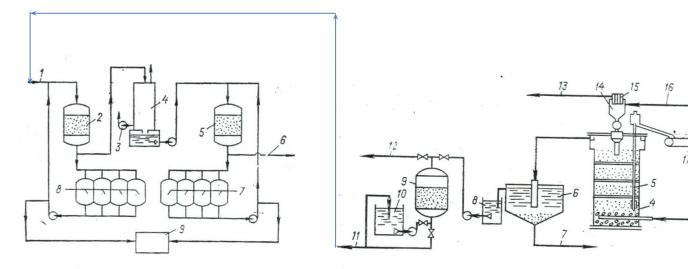

Технологическая схема очистки воды и обработки осадка на очистной станции

I— механическая очистка; II— биологическая очистка; III— химическая очистка (IIIа— удаление фосфора, IIIб— удаление азота); IV— фильтрование; V— адсорбционная очистка; VI— хлорирование; I— барминутор; 2— лоток Паршаля; 3— первичные отстойники; 4— аэротенки; 5— вторичные отстойники; 6— камера реакции; 7— камера флокуляции; 8— отстойник; 9— градирня; 10— установка рекарбонизации с контактным резервуаром; II— напорные многослойные фильтры; I2— адсорберы; I3— хлораторная установка; I4— контактный резервуар; I5— резервуар для обезвоживания угля; I6— печь регенерации; I7— резервуар для охлаждения регенерированного угля; I8— осветлитель промывных вод; I9— уплотнитель известкового осадка; 20— центрифуга; 21— печь регенерации извести; 22— пылеуплотнители; 23— центрифуга; 24— печь сжигания осадка.


## Эффективность доочистки стоков на установке с адсорбционными аппаратами

| Показатели качества СВ     | Поступающая<br>вода | Вода после<br>очистки |
|----------------------------|---------------------|-----------------------|
| рН                         | 6,5 – 7,8           | 6,5 – 7,5             |
| Взвешенные вещества,       | 15 – 30             | 0,9 - 1,0             |
| мг/л                       | 30 – 80             | 1,0 - 2,0             |
| БПК, мг О <sub>2</sub> /л  | 60 – 140            | 10 – 20               |
| ХПК мг O <sub>2</sub> /л   | 700 – 1300          | 700 – 1300            |
| Общее солесодержание,      | 25 – 35             | 0,5-1,0               |
| мг/л                       | 62 – 77             | 0,18 - 0,60           |
| Нитраты, мг/л              | 150000 - 200000     | 2 - 4                 |
| Фосфаты, мг/л              |                     |                       |
| Бактерии (Coli), число/100 |                     |                       |
| МЛ                         |                     |                       |




Технологическая схема адсорбционной очистки сточных вод:

1 — подача сточной воды; 2 — приемный резервуар; 3 — насос; 4 — адсорбер; 5 — эрлифт; 6 — отстойник; 7 — подача осадка на сжигание; 8 — приемный резервуар осветленной воды; 9 — скорый многослойный фильтр; 10 — резервуар промывных вод; 11 — трубопровод очищенной воды; 12 — отвод промывных вод; 13 — воздухопровод к вакуум-насосу; 14 — вагрузочный бункер активного угля; 15 — рукавные фильтры; 16 — линия вакуумтранслорта активного угля; 17 — ленточный вакуум-транспортер; 18 — реверсивный транспортер; 19 — шнековый питатель; 20 — подача угля на регенерацию.



Технологическая схема обессоливания доочищенных сточных вод:

1 — трубопровод подачи доочищенных сточных вод;
2 — Н-катионитовый фильтр;
3 — вентилятор;
4 — дегазатор;
5 — ОН-анионитовый фильтр;
6 — отвод обессоленной воды;
7 — сборники регенерированных растворов аммиака;
8 — сборники регенеринерированных растворов азотной кислоты;
9 — отделение получения смещанных минеральных удобрений.



Технологическая схема обессоливания доочищенных сточных вод:

1 — трубопровод подачи доочищенных сточных вод;
2 — Н-катионитовый фильтр;
3 — вентилятор;
4 — дегазатор;
5 — ОН-анионитовый фильтр;
6 — отвод обессоленной воды;
7 — сборники регенерированных растворов аммиака;
8 — сборники регенерированных растворов азотной кислоты;
9 — отделение получения смешанных минеральных удобрений.

Технологическая схема адсорбционной очистки сточных вод:

1— подача сточной воды; 2— приемный резервуар; 3— насос; 4— адсорбер; 5— эрлифт; 6— отстойник; 7— подача осадка на сжигание; 8— приемный резервуар осветленной воды; 9— скорый многослойный фильтр; 10— резервуар промывных вод; 11— трубопровод очищенной воды; 12— отвод промывных вод; 13— воздухопровод к вакуум-насосу; 14— вагрузочный бункер активного угля; 15— рукавные фильтры; 16— линия вакуумтранслорта активного угля; 17— ленточный вакуум-транспортер; 18— реверсивный транспортер; 19— шнековый питатель; 20— подача угля на регенерацию.

## Эффективность доочистки стоков на установка с адсорбционно-ионообменными

аппаратами

| Показатели качества СВ        | Поступающая | Вода после |
|-------------------------------|-------------|------------|
|                               | вода        | очистки    |
| рН                            | 7,8 – 9,6   | 6,5 – 7,5  |
| Взвешенные вещества, мг/л     | 18 – 35     | следы      |
| XПК мг O₂/л                   | 35 – 50     | 4 - 13     |
| Общее солесодержание, мг/л    | 1300 – 2300 | 500 – 650  |
| Жесткость, мг-экв/л           |             |            |
| общая                         | 7,5 – 8,5   | 0,6 – 0,9  |
| карбонатная                   | 4,7 – 5,8   | 0.4 - 0.7  |
| Натрий + калий, мг/л          | 280 – 820   | до 300     |
| Хлорид, мг/л                  | 420 – 1250  | до 350     |
| Сульфаты, мг/л                | 240 – 380   | 10 – 20    |
| Аммоний, мг/л                 | 2,8 - 8,8   | 1,2 – 3,5  |
| Фосфаты, мг/л                 | 6,7 – 13,5  | 0,2 - 0,5  |
| Бактерии (Coli), число/100 мл | 100000      | следы      |