Angina pectoris

Raja kumar Premjith Raja

Angina pectoris

Chest pain due to ischemia of heart muscles

• Spasm/obstruction of coronary arteries

• Myocardial ischemia

• Reduced O₂ supply to myocardium

Chest pain---Angina pectoris

•Weak relationship between severity of pain and degree of oxygen supply- there can be severe pain with minimal disruption of oxygen supply or no pain in severe cases

- •Four types:
- ✓ Stable angina
- ✓ Unstable angina
- ✓ Microvascular angina
- ✓ Prinzmetal's angina

Stable angina:

- Also called "Effort Angina"
- Discomfort is precipitated by activity
- •Minimal or no symptoms at rest
- •Symptoms disappear after rest/cessation of activity

<u>Unstable angina</u>:

- Also called "Crescendo angina"
- Acute coronary syndrome in which angina worsens
- Occurs at rest
- Severe and of acute onset
- •Crescendo pain- pain increases every time

Microvascular angina:

- •Also called Syndrome X
- Cause unknown
- •Probably due to poor functioning of the small blood vessels of the heart, arms and legs
- No arterial blockage
- •Difficult to diagnose because it does not have arterial blockage
- Good prognosis

Prinzmetal's angina

- •Prinzmetal's angina is a variant form of angina with normal coronary vessels or minimal atherosclerosis
- •It is probably caused by spasm of coronary artery

- Symptoms
- •What is the cause of ischemia?
 either ↑ oxygen demand or ↓ oxygen supply
- •Inadequate blood supply and decreased oxygen supply are directly related to blockade or narrowed vessels

Treatment:

- •Aims:
- ✓ Relief of symptoms
- ✓ Slowing progression of the disease
- ✓ Reduction of future events like myocardial infarction

Drugs:

1. For treatment of acute attacks:

Organic nitrates/nitrites

2. For prophylaxis:

Organic nitrates

Beta blockers

Calcium channel blockers

Ranolazine

K⁺ channel opener- Nicorandil

β-Blockers/Ca²⁺ channel blockers O₂ [•↓ Coronary flow • † Heart rate • † Contractility De • \ Regional **HEART** u m myocardial blood • ↑ Preload p a flow • ↑ Afterload n Nitrates/Ca²⁺ channel Nitrates/Ca²⁺ channel

blockers

blockers/antithrombotics/

statins

Organic nitrates

Pro drugs — release NO

↑ Levels of intracellular cGMP

Dephosphorylation of mysosin light chain

↓ Cytosolic calcium

Relaxation of smooth muscle

EDRF –endothelium derived relaxing factor is NO

- •Relaxation of vascular smooth musclesvasodilatation
- •NO-mediated guanylyl cyclase activation inhibits platelet aggregation
- •Relaxation of smooth muscles of bronchi and GIT

Endogenous NO pathway

Neurotransmission

Immunomodulation

Three different forms of NO synthase are found in humans:

- 1. Neuronal NOS (nNOS or NOS1)- found in nervous tissue, skeletal muscle- involved in cell communication
- 2. Inducible NOS (iNOS or NOS2) found in immune system and cardiovascular system- involved in immune defense against pathogens
- 3. Endothelial NOS (eNOS or NOS3 or cNOS) found in endothelium- responsible for vasodilation

CVS Effects:

- Vasodilatation- low concentrations preferably dilate veins
- •Venodilatation→ decreases venous return to heart
- •Decreased chamber size and end-diastolic pressure of ventricles
- •Systemic vascular resistance changes minimally
- •Systemic BP may fall slightly
- •Dilatation of meaningeal vessels can cause headache

- •HR-unchanged or may increase slightly (reflex tachycardia)
- Cardiac output slightly reduced
- •Even low doses can cause dilatation of arterioles of face and neck causing flushing
- •Higher doses may cause fall in systemic BP due to venous pooling and decreased arteriolar resistance
- •Reflex tachycardia and peripheral arteriolar constriction occur which tend to restore the systemic BP

- •Coronary blood flow may initially increase transiently
- •Subsequently, due to decreased BP, may decrease
- •Nitrates have dilating effect on large coronary vessels
- •Increase collateral flow to ischemic areas
- •Tend to normalize blood flow to subendocardial regions of heart- *redistribution of blood*
- •Dilate stenoses and reduce vascular resistance in ischemic areas

- •Reduction in myocardial O₂ consumption is caused by:
- ✓ Peripheral pooling of blood- reduced preload
- ✓ Arteriolar dilatation- reduced afterload
- ✓ ↓ in end diastolic volume and LV filling pressure
 - •In platelets increases cGMP: inhibits aggregation
 - •Strongest factor for nitrate effect is peripheral pooling
- ✓ Nitrates infused into coronary artery- no effect
- ✓ Sublingual- produces effect
- ✓ Venous phlebotomy mimics effect of nitrates

How myocardial O₂ consumption can be determined?

<u>Double product</u>: HR \times systolic BP- approximate measure of myocardial O_2 consumption

<u>Triple product</u>: Aortic pressure \times HR \times Ejection timeroughly proportional to myocardial O_2 consumption

- •Angina occurs at the same value of triple product with or without nitrates, therefore;
- •The beneficial effects of nitrates appear to be due to decrease in oxygen consumption rather than increase in oxygen supply
- •Relax all smooth muscles-GIT, biliary, bronchial etc

Pharmacokinetics:

- •Orally ineffective because of high first pass metabolism
- •Administered sublingually to avoid first pass matabolism <u>Tolerance</u>:
- •Repeated doses lead to tolerance
- Dose spacing is necessary
- •Reasons for tolerance:
- ✓ Capacity of vascular smooth muscle to convert nitrates to NO – called true vascular tolerance
- ✓ Pseudotolerance- due to other reasons

<u>ADRs</u>:

- •Headache- may be severe
- ✓ May disappear after continued use or,
- ✓ Decrease dose
 - •Transient episodes of dizziness, weakness, pallor etcsymptoms of postural hypotension
 - Rash
 - •PDE5 inhibitor (sildenafil) and nitrates given simultaneously can produce severe hypotension
 - •Uses: Angina pectoris, CHF, MI

Administration of nitrates:

- Sublingual
- •Oral: For prophylaxis, require high doses due to first pass metabolism, isosorbide dinitrate (20 mg or more) every 4 h or mononitrate (20 mg or more) OD or BD
- •Cutaneous:
- ✓ Ointment (2%) applied to 2.5-5 cm patch of skin

- ✓ Transdermal nitrogycerine discs impregnated with nitroglycerine polymer- gradual absorption and 24 h plasma nitrate concentration
- ✓ Onset is slow
- ✓ Peak concentration in 1-2 h
- ✓Interrupt therapy for at least 8 h a day to prevent tolerance

<u>Ca²⁺</u> antagonists:

- \downarrow Ca²⁺ influx
- Negative iono and chronotropic effects
- Peripheral vasodilatation
- •Used in variant angina (spasm), exertional angina, unstable angina, MI, hypertension, antiarrhythmic

β-Blockers:

- •Effective in reducing severity and frequency of exertional angina
- May worsen vasospastic angina- contraindicated
- •Reduce myocardial O₂ demand by reducing cardiac work (-ve iono and chrono effects; decrease in BP during rest and exercise)
- •All β-blockers are equally effective

Ranolazine:

- •Reserve agent for treatment of chronic, resistant angina
- •Inhibits cardiac late Na⁺ current
- •Effects the Na⁺ dependent Ca²⁺ channels and prevents Ca²⁺ overload that causes cardiac ischemia
- Decreases cardiac contractility
- •No change in HR, BP
- •Prolongs QT interval so it is contraindicated with drugs that increase QT interval

Nicorandil

- •Vasodilatory drug used to treat angina pectoris
- •It has dual properties of a nitrate and ATP sensitive K⁺ channel opener
- •Nitrate action dilates the large coronary arteries at low plasma concentrations
- •At high concentrations it reduces coronary artery resistance which is associated with opening of ATP sensitive K⁺ channels
- •Nicorandil has cardioprotective effect which appears to be due to activation of ATP sensitive K⁺ channels
- •ADRs: Flushing, palpitation, headache, mouth ulcers, nausea and vomiting