# Проект на тему «Видеокарты»

Группа ИС-20-1

#### Состав:

Кравчук Р.О. Кривецкий М.Ю. Боканач М.М. Сафарова В.О.

Филимонова К.И.

#### Оглавление:



- 1. <u>История:</u>
  - 1. <u>MDA</u>
  - 2. <u>CGA</u>
  - 3. <u>EGA</u>
  - 4. <u>MGCA</u>
  - 5. <u>XGA</u>
  - 6. <u>\$3</u>
  - 7. <u>Voodoo Graphics</u>
  - 8. <u>NV1</u>
  - 9. NVIDIA Riva 128
  - 10. <u>INTEL 1740</u>
  - 11. <u>ATI RAGE 128</u>
  - 12. <u>GeForce 2-4 series</u>
  - 13. RADEON 8500 и RADEON 9700 PRO

- 2. Устройство видеокарт
- 3. <u>Характеристики</u>
- 4. Интерфейсы
- 5. Программное обеспечение
- 6. Соотношение компаний на рынке
- 7. Компания АМД
- 8. Технологии АМД
- 9. <u>Компания NVIDIA</u>
- 10. <u>Технологии NVIDIA</u>
- 11. Примеры и тесты
- **12.** <u>Вопросы</u>

14 GeForce 6 series

# История развития видеокарт



## MDA (Monochrome Display Adapter)



Первой графической картой для ПК считается видеоадаптер MDA (Monochrome Display Adapter), входивший в состав знаменитого IBM PC (1981 год), основоположника семейства PC-совместимых ПК. В отличие от предшественников, интегрированных в основную плату компьютера, IBM MDA был собран на собственной плате и устанавливался в слот универсальной шины XT-bus. По сути, он представлял собой простой видеоконтроллер, выводящий на дисплей содержимое видеопамяти.

Помимо самого чипа видеоконтроллера плата MDA несла на себе 4 кб видеопамяти, микросхему ПЗУ со шрифтом и тактовый генератор.

Что интересно, первый видеоадаптер для IBM PC был полностью текстовым, т.е. не имел графического режима работы. В то же время большинство ПК тех лет умели работать с графикой.

Что же умел MDA? Для своего времени - довольно много. На экране монитора он моготобразить 25 строк по 80 символов, причем каждый символ занимал матрицу 9х14 пикселов. Иными словами, он обеспечивал разрешение 720х350 пикселов, и поэтому отображаемый им текст имел высокую четкость. Кроме того, каждый символ мог иметь один из пяти атрибутов: обычный шрифт, подчеркнутый, яркий, мигающий, инверсный. Разумеется, использовался MDA исключительно с монохромными (одноцветными) мониторами.



## CGA (Color Graphics Adapter)



Для менее серьезного применения своего ПК IBM заготовила другой графический адаптер, названный CGA (Color Graphics Adapter), выпущенный в том же 1981 году. Обеспечивая не такое высокое разрешение картинки, как MDA, CGA мог работать во множестве различных режимов - как текстовых, так и графических, для чего потребовалось оснастить его 16 кб видеопамяти.

Графику СGA мог выводить в одном из трех режимов: 640х200 с 1-битным цветом (монохромный режим), 320х200 пикселов с 2-битным цветом (4 цвета), 160х100 пикселов с 4-битным цветом (16 цветов). Последний технически представлял собой эмуляцию графики с помощью текстового режима (т.е. пикселы имитировались символами, представлявшими собой закрашенный наполовину квадрат 8х8 пикселов).



## EGA (Enhanced Graphics Adapter)



Адаптер EGA (Enhanced Graphics Adapter, 1984 год) моготображать графику разрешением 640х350 пикселов при 4-битном цвете (16 цветов). Объем видеопамяти возрос сначала до 64 кб, а затем до 256 кб, что позволило EGA оперировать несколькими страницами видеопамяти. Это обеспечивало некоторое ускорение графики: процессор мог формировать сразу несколько кадров картинки.

Сейчас это звучит странно, но подобные примитивные видеоадаптеры царили на рынке годами. Так, до 1987 года на РС-совместимых ПК безраздельно правил EGA, и пользователи не представляли, что может быть лучше.



## MCGA (Multi-Color Graphics Array)



MCGA (Multi-Color Graphics Array), новейший видеоадаптер, встраиваемый в системную плату компьютеров PS/2, вскоре был выпущен в виде платы для шины ISA и получил название VGA (Video Graphics Array).

Новинка обеспечивала вывод графики в разрешении 640х480 пикселов с 16 цветами либо 320х240 пикселов в 8-битном цвете (256 цветов). Это уже было слегка похоже на нечто фотореалистичное. Поскольку адаптер изначально разрабатывался для ни с чем не совместимых PS/2, его разработчики без тени сомнения создали для него новый, уже аналоговый видеоинтерфейс - 15-контактный D-Sub.

256 кб видеопамяти позволяли хранить несколько кадров и пользовательский шрифт в придачу, а при использовании всего объема под единственный кадр можно было вывести картинку в небывалом по тем временам разрешении 800х600 точек.



## XGA (Extended Graphics Array)



IBM разработала для PS/2 сразу два видеоадаптера: встроенный MCGA (VGA) и улучшенный 8514/A. Поставляемый в виде опционального апгрейда для PS/2, 8514/A мог выводить картинку разрешением 1024x768 пикселов с 8-битным цветом. Но на этом технологические новшества не заканчивались. Адаптер научился самостоятельно рисовать у себя в памяти линии задивать

Адаптер научился самостоятельно рисовать у себя в памяти линии, заливать часть кадра цветом, накладывать битовую маску. Для графических приложений тех лет это была неоценимая помощь: даже при построении диаграмм ускорение было хорошо заметно, а приложения инженерной графики и вовсе многократно выиграли в производительности.

В 1990 году 8514/А получил смену в виде адаптера XGA (Extended Graphics Array), обладавшего чуть расширенной функциональностью. В новом адаптере появился режим 800х600 пикселов с 16-битным цветом (так называемый High Color, 65 536 цветов), в остальном он был аналогичен своему предшественнику.



### **S**3



Пионером в ускорении трехмерной графики для ПК стала небезызвестная компания S3. Адаптер S3 Virge был преемником очень успешной Trio 64V+, при этом поддерживая до 4 Мб памяти DRAM или VRAM. Его графическое ядро и видеопамять работали на частоте 80 МГц Наиболее интересным новшеством в Virge стала поддержка функций ускорения 3D-графики. Серьезную прибавку к скорости игр того времени они обеспечить не могли.

Зато с помощью этих функций разработчики игр могли позволить себе украсить свои продукты новомодными технологиями, такими, как динамическое освещение и билинейная фильтрация текстур.



## Voodoo Graphics



Так же, как y Virge, в активе Voodoo Graphics имелась поддержка OpenGL и DirectX.

Максимальный графический режим Voodoo Graphics выглядел не слишком впечатляюще - всего 640х480 пикселов при 16-битном цвете, но тогда казалось, что для 3D-графики этого более чем достаточно.

Конструктивно Voodoo Graphics представлял собой адаптер, устанавливаемый и PCI-слот, но функций 2D-видеокарты был лишен. К монитору он подключался последовательно с обычным видеоадаптером и перехватывал управление при переходе в 3D-режим.

На борту Voodoo Graphics было 4 Мб EDO DRAM, работающей, как и процессор, на частоте 50 МГц. Падение цен в конце 1996 года на этот тип памяти позволило 3Dfx продавать свои чипсеты относительно недорого, что дополнительно стимулировало их популярность.



### NV1



Компания NVIDIA была всего на два года старше 3Dfx, и уже в 1995 году успела выпустить свой первый, провальный, продукт. Адаптер NV1 был неплохо задуман и совмещал в себе 2D-адаптер, 3D-ускоритель, звуковой адаптер и даже порт для геймпада от Sega Saturn.



#### **NVIDIA Riva 128**



В 1996 году NVIDIA смогла выпустить новый, совершенно иной продукт. NVIDIA Riva 128, основанный на чипе NV3, имел 4 Мб памяти SDRAM с шириной шины 128 бит и работал на частоте 100 МГц. Имея неплохую 3D-часть, сравнимую по производительности с Voodoo Graphics, Riva 128 выпускался как для PCI, так и в варианте для AGP (чем «монстры» похвастаться не могли), и сумел вытащить NVIDIA из финансовой пропасти.




#### **INTEL 1740**



В 1998 году компания Intel представила свой графический адаптер Intel i740. Данная модель в первую очередь предназначалась для систем, построенных на базе процессоров Pentium II.

Адаптер был создан с использованием 350нанометровой технологии, частота ядра и видеопамяти составляла 66 МГЦ, ширина шины памяти — 64 бита. Объем памяти типа SDRAM или SGRAM достигал 16 Мб. В качестве интерфейса использовалась шина АGP или PCI. Видеокартой поддерживалось билинейное и трилинейное текстурирование. Максимальное разрешение составляло 1280х1024 точки в 16-битном цвете и 1600х1200 в 8-битном.



#### ATI RAGE 128



В 1999 году вышла видеокарта Rage 128, изготовленная по 350-нанометровому техпроцессу. Частота ядра и памяти составляла 103 МГц, RAMDAC — 250 МГц. Объем памяти доходил 32 Мб, использовалась 128-битная шина. Видеокарта поддерживала 32-битный цветовой режим. Видеокарта поддерживала однопроходную трилинейную фильтрацию и аппаратное ускорение DVD-видео. Кроме того Rage 128 работала с технологией Twin Cache Architecture, объединяя кэш-память пикселей и текстур для увеличения полосы пропускания.

#### ВИДЕОАДАПТЕР GEFORCE 256

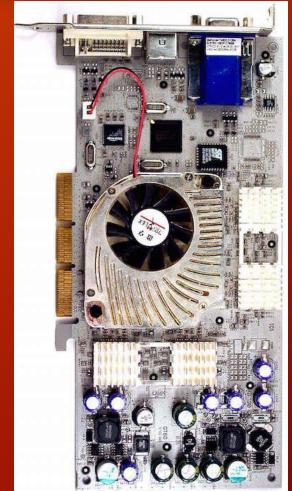
Все в том же 1999 году компания NVIDIA выпустила адаптер GeForce 256 (кодовое имя NV10), который смог опередить остальных за счет отменной функциональности. Это был весьма мощный 3D-акселератор, один из первых заменивший встроенный геометрический сопроцессор. У него присутствовало четыре конвейера рендеринга с рабочей частотой 120 МГц и 32 Мб памяти SDRAM. Частота ядра в режиме 3D достигала 120 МГц. Ширина шины видеопамяти была 128-бит, а частота — 166 МГц. Поддерживалось разрешение вплоть до 2048х1536 75 Гц.



### **GEFORCE 2-4 SERIES**



В 2000-2001 годах компания NVIDIA выпустила серию видеокарт GeForce 2 (GTS, Ultra, Pro, MX и т. д.). У этих видеоадаптеров было 256-битное ядро — одно из самых производительных ядер того времени.

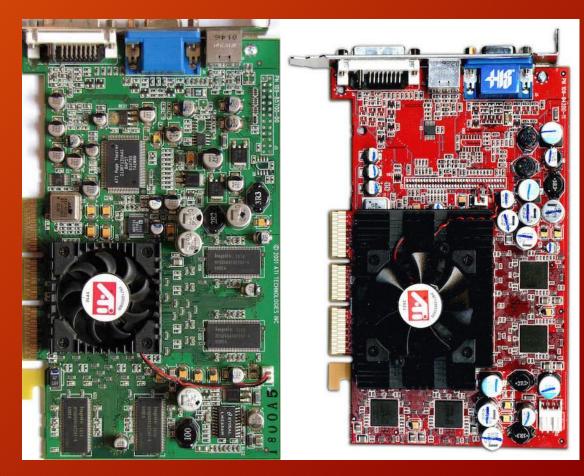

Данная видеокарта была изготовлена по 180-нм техпроцессу и содержала 25 миллионов транзисторов. Объем памяти DDR SGRAM составлял 32 Мб или 64 Мб с частотой 200 МГц и 128-битной шиной. У адаптера имелось 4 пиксельных конвейера. NV15 включала в себя полную поддержку DirectX 7, OpenGL 1.2.

#### **GEFORCE 4**

GeForce 4 в 2002 году. С таким названием выпускались два типа графических карт: высокопроизводительные Ti (Titanium) и бюджетные МХ.

Линейка GeForce 4 Ті была представлена моделями Ті 4400, Ті 4600, и Ті 4200. Видеокарты отличались тактовыми частотами ядра и памяти. Объем видеопамяти составлял 128 Мб (у Ті 4200 предлагался вариант и на 64 Мб). Модель GeForce 4 Ті 4200 была самой распространенной за счет высокой производительности по приемлемой цене.






## RADEON 8500 и RADEON 9700 PRO



В Radeon 8500 были собраны новейшие наработки ATI, он оказался очень быстрым. Изготавливался по 150-нм техпроцессу, содержал 60 миллионов транзисторов. Частоты ядра и памяти составляли 275 МГц. Использовалась 128-битная шина. Объем памяти DDR SDRAM предлагался в двух вариантах: 64 Мб и 128 Мб.

Летом 2002 года АТІ выпустила чип R300, который изготавливался по 150-нм техпроцессу и содержал около 110 миллионов транзисторов. У него было 8 пиксельных конвейеров. Также чип поддерживал улучшенные методы сглаживания. На базе R300 вышла видеокарта Radeon 9700 с тактовыми частотами ядра 325 МГц и памяти 310 МГц. Объем памяти составлял 128 Мб.



#### GEFORCE 6 series



Развитие видеокарт активно продолжалось и в 2004 году вышел следующий продукт компании — GeForce 6 Series (кодовое название NV40).

Чип NV40 производился также по 130-нм техпроцессу, что не помешало ему стать более экономичным. NV40 работал через 256-битную шину, при этом использовались очень быстрые модули памяти типа GDDR3. Одна из первых моделей, видеокарта GeForce 6800 была весьма производительной и тянула самые новые игры того времени. Она работала как через интерфейс AGP, так и через шину PCI Express. Частота ядра составляла 325 МГц, а частота памяти была 700 МГц. Объем памяти доходил 256 Мб или 512 Мб.



### GEFORCE 7950 GX2



Событием 2006 года для компании NVIDIA стал выпуск первой двухчиповой видеокарты GeForce 7950, созданной по 90-нм техпроцессу. NVIDIA 7950 GX2 имела по одному чипу G71 на каждой из плат. Ядра видеокарты работали на частоте 500 МГц, память — на частоте 600 МГц. Объем видеопамяти типа GDDR3 составлял 1 Гб (по 512 Мб на каждый чип), шина 256-бит.



### **GEFORCE GTX 280**



В 2008 году компания NVIDIA выпустила чип GT200, который использовался в видеокартах GeForce GTX 280 и GTX 260. Чип производился по 65-нм техпроцессу и содержал 1,4 миллиарда транзисторов, обладал 32 ROP и 80 текстурными блоками. Шина памяти увеличилась до 512-бит. Также была добавлена поддержка физического движка PhysX и платформы CUDA. Частота ядра видеокарты составляла 602 МГц, а памяти типа GDDR3 — 1107 МГц.



#### RADEON HD 4870



Старшая видеокарта новой линейки получила название Radeon HD 4870. Частота ядра составляла 750 МГц, а память работала на эффективной частоте 3600 МГц. С новой линейкой видеокарт компания продолжила свою новую политику выпуска устройств, которые могли успешно конкурировать в Middle-End-сегменте. Так, Radeon HD 4870 стал достойным конкурентом видеокарты GeForce GTX 260.



#### **GEFORCE GTX 480**



В 2010 году NVIDIA представила GF100 с архитектурой Fermi, которая легла в основу видеокарты GeForce GTX 480. GF100 производился по 40-нм техпроцессу и получил 512 потоковых процессоров. Частота ядра была 700 МГц, а памяти — 1848 МГц. Ширина шины составила 384-бит. Объем видеопамяти GDDR5 достигал 1,5 Гб.



#### **GEFORCE GTX 680**



Начиная с 2011 года NVIDIA выпустила поколение графических ускорителей. Одной из примечательных моделей была видеокарта GeForce GTX 680, основанная на чипе GK104, производившемуся по 28-нм техпроцессу. Частота работы ядра 1006 МГц, частота работы памяти 6008 МГц, шина 256-бит GDDR5.



#### **GEFORCE** 700 series



В 2013 году появились карты семейства GeForce 700, которые были представлены как на базе архитектуры Kepler, так и новейшей архитектуры Maxwell.

Следует отметить, что первыми в 700 серии стали карты GeForce GTX Titan и GTX 780 - флагманские карты, демонстрирующие всю мощь архитектуры Kepler. В 2014 году начали выходить карты GeForce GTX 750 и GTX 750 Тi на основе архитектуры Maxwell. Основной фишкой архитектуры можно назвать как динамическое разрешение для сглаживания неровностей без ущерба производительности, так и развитие технологии CUDA. Совместимость с DirectX 12 является немаловажным фактором как для геймеров, так и для разработчиков.



#### **GEFORCE 900 series**



Первые две модели, GeForce GTX 980 и GeForce GTX 970, были представлены 18 сентября 2014 года. Чипы семейства основаны на архитектуре Maxwell второго поколения.

Энергоэффективность у видеокарт существенно возросла в отношении предшествующей линейки карт, а также снизилась теплоотдача, что выгодно сказалось на температурных режимах.



#### **GEFORCE 10 series**



8 июля 2016 года была представлена видеокарта среднего ценового диапазона GeForce GTX 1060, сопоставимая по производительности с GeForce GTX 980, но потребляющая намного меньше энергии.

22 июля 2016 года компания NVIDIA представила профессиональную видеокарту NVIDIA TITAN X (Pascal), однако она не относится к игровой серии видеокарт, несмотря на то, что она основана на новом флагманском чипе GP102.

1 марта 2017 года в ходе мероприятия GDC 2017 компания NVIDIA представила видеокарту GeForce GTX 1080 Ті, которую глава компании назвал самым мощным игровым графическим ускорителем в мире. По словам NVIDIA, новинка на 35 % производительнее GeForce GTX 1080 и обходит даже Titan X Pascal.



#### **GEFORCE 16 series**



Серия GeForce 16 была запущена 22 февраля 2019 года с анонсом GTX 1660 Ti.

22 апреля 2019 года вместе с анонсом GTX 1650 были представлены первые ноутбуки с использованием видеокарт 16-ой серии.

В октябре 2019 года NVIDIA представила две новые видеокарты в семействе Super. Это GeForce GTX 1660 Super. Ну а тем, кто ждал ещё более доступного по цене решения, предлагается GeForce GTX 1650 Super. Вся серия GTX 1600 Super основана на урезанной архитектуре Turing и поддерживает такие её особенности, как одновременное выполнение целочисленных операций и операций с плавающей точкой, унифицированную архитектуру кеша и технологию адаптивного шейдинга для повышения производительности.



#### **GEFORCE 20 series**



GeForce RTX 20 Series — семейство графических процессоров NVIDIA, представленное 20 августа 2018 в рамках конференции Gamescom. Чипы семейства GeForce RTX 20 основаны на новой архитектуре Turing. Заявлено увеличение производительности до 6 раз в области трассировки лучей по сравнению с графическими процессорами предыдущего поколения.

Серия GeForce RTX 20 поддерживает трассировку лучей в реальном времени, которая реализована с помощью новых RT-ядер. Для увеличения детализации изображения используются решения на базе искусственного интеллекта



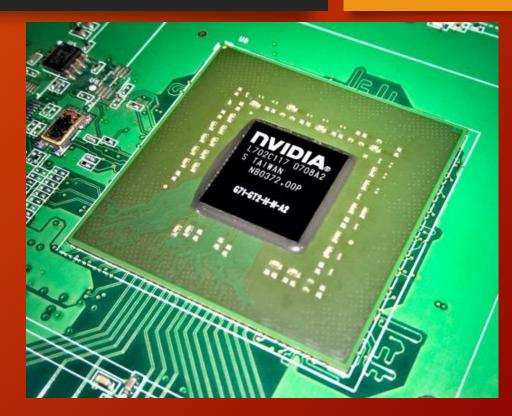
#### **GEFORCE** 30 series



Серия была анонсирована 1 сентября 2020 года, в годовщину выпуска первого процессора серии GeForce — GeForce 256.

В этот день были продемонстрированы 3 модели — GeForce RTX 3070 (содержит 17 млрд транзисторов в графическом ядре), GeForce RTX 3080 (содержит 28 млрд. транзисторов в графическом ядре) и GeForce RTX 3090 (содержит 29 млрд. транзисторов в графическом ядре). Чипы семейства GeForce RTX 30 основаны на архитектуре RTX второго поколения, Ampere. По заявлениям NVIDIA, производительность и энергоэффективность новой микроархитектуры была значительно улучшена, сравнению с предыдущим поколением чипов, основанных на архитектуре Turing. Это было достигнуто в том числе благодаря переходу на 8-нм техпроцесс, что позволило значительно увеличить количество вычислительных блоков.




# Устройство видеокарт



## Графический процессор



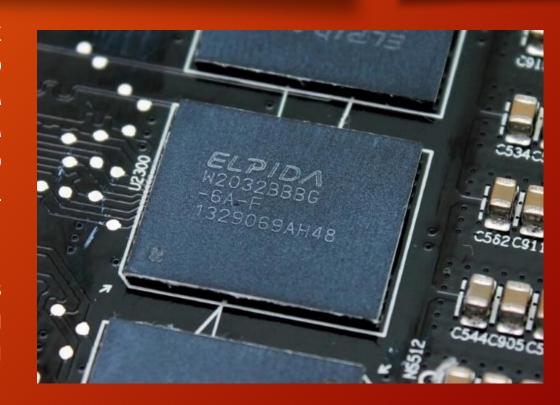
В самом начале нужно поговорить о самой важной детали в видеокарте - GPU (графический процессор). От данного компонента зависит быстродействие и мощность всего устройства. В его функциональность входит обработка команд, связанных с графикой. Графический процессор берет на себя выполнение определенных действий, за счет чего снижается нагрузка на ЦП, освобождая его ресурсы для других целей. Чем современнее видеокарта, тем мощность установленного в ней GPU больше, она может превосходить даже центральный процессор благодаря наличию множества вычислительных блоков.



## Видеоконтроллер



За генерацию картинки памяти отвечает видеоконтроллер. Он посылает на цифрокоманды аналоговый преобразователь и проводит обработку команд ЦП. В современной карточке встроено несколько контроллер видеопамяти, внешней компонентов: внутренней ШИНЫ данных. Каждый компонент функционирует независимо друг от друга, позволяя осуществлять одновременное управление экранами дисплеев.




## Видеопамять



Для хранения изображений, команд и промежуточных невидимых на экране элементов необходимо определенное количество памяти. Поэтому в каждом графическом адаптере присутствует постоянный объем памяти. Она бывает разных типов, отличающихся по своей скорости работы и частоте. Тип GDDR5 на данный момент является самым популярным, используется во многих современных карточках.

Однако еще стоит учитывать, что помимо встроенной в видеокарту памяти новые устройства задействуют и ОЗУ, установленную в компьютере. Для доступа к ней используется специальный драйвер через шину PCIE и AGP.



## Постоянное запоминающее устройство



Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство (ПЗУ), в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор.

ВІОЅ обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, задаёт все низкоуровневые параметры видеокарты, в том числе рабочие частоты и питающие напряжения графического процессора и видеопамяти, тайминги памяти. Также VBIOЅ содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы.



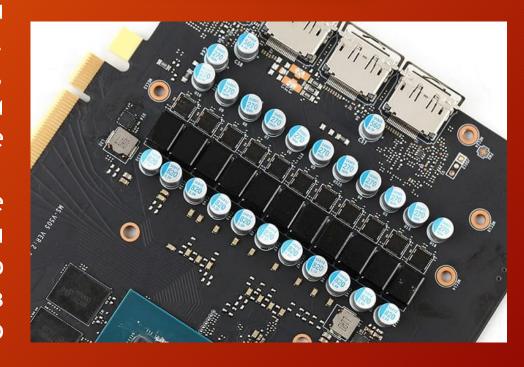
## Контроллер ЦАП



Цифро-аналоговый преобразователь (ЦАП, он же RAMDAC) служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Обычно ЦАП совмещен на одном кристалле с видеоконтроллером, а его главные характеристики - это тактовая частота и разрядность.

ЦАП работает следующим образом:

Графический процессор получает информацию об изображении из памяти видеокарты, после чего данные передаются в цифро-аналоговый преобразователь, в котором они преобразуется в уровни интенсивности цвета, подаваемые на монитор.




### Система питания



Надежное электропитание - основа стабильной работы любого устройства, и видеокарта тут не исключение. Нагрузка на систему электропитания весьма высока, если учесть потребление электроэнергии современными GPU, именно поэтому видеокарте необходима качественная система питания.

Организовано энергопотребление по тому же принципу, что и питание процессора. Фазы питания располагаются либо с одной стороны графического процессора, либо с двух, если этих фаз много (в дорогих видеокартах, как правило, их действительно много).



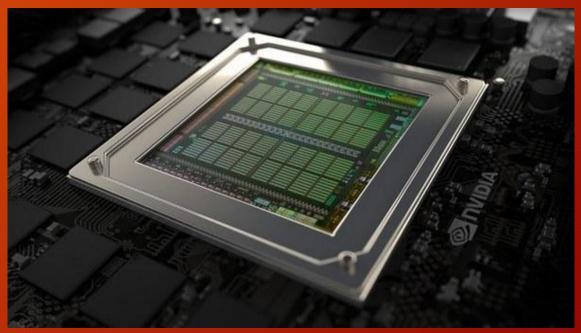
## Система охлаждения



Как известно, процессор и графическая карта являются самыми горячими комплектующими компьютера, поэтому для них необходимо охлаждение. Если в случае с ЦП кулер устанавливается отдельно, то в большинство видеокарт вмонтирован радиатор и несколько вентиляторов, что позволяет сохранить относительно низкую температуру при сильных нагрузках. Некоторые мощные современные карточки очень сильно греются, поэтому для их охлаждения используется более мощная водяная система.






# Характеристики



### Графическое ядро (GPU)



Является основой видеокарты и именно от него во многом зависят быстродействие и возможности всего устройства. Оно занимается расчётами выводимого изображения, освобождая от этой обязанности CPU (процессор компьютера), а так же производит расчёты для обработки команд трёхмерной графики. Основная техническая характеристика ядра - это частота, которая измеряется в мегагерцах. Чем больше это значение, тем быстрее, производительнее и мощнее сама видеокарта, т.е при выборе между двумя карточками, производительность выше будет у той, частота графического процессора которой выше, а посему в первую очередь мы обращаем внимание именно на этот параметр.



#### Видеопамять



Вторая по важности и так же сильно влияющая на конечную производительность видеокарты характеристика. Она хранит в себе всю графическую информацию, созданную ядром.

Есть несколько типов видеопамяти, а именно, в зависимости от ценового сегмента, это может быть память типа: DDR, DDR2, DDR3, GDDR3, GDDR5 и тп. По идее эта ротация определяет быстродействие памяти. Хотя, на практике, это чистый маркетинг и важней вовсе не все эти 1-2-3, а только характеристики, а именно:

- •объем памяти (измеряется в мегабайтах)
- •разрядность шины памяти (измеряется в битах)
- •тактовая частота памяти.

Важнее остальных здесь разрядность шины, ибо она является параметром, определяющим производительность видеопамяти и видеокарты в целом. Большая разрядность (или, как говорят, ширина шины памяти) позволяет передавать большее количество информации в единицу времени в графическое ядро и обратно (это называется пропускной способностью), что, естественно, обеспечивает большую производительность видеокарты.

### Современные типы видеопамяти



| Тип    | Год выпуска | Частота МГц | Ширина буфера | Напряжение |
|--------|-------------|-------------|---------------|------------|
| GDDR   | 2001        | 200         | 2 бит         | 2.5 V      |
| GDDR2  | 2003        | 500         | 4 бит         | 2.5 V      |
| GDDR3  | 2004        | 900         | 4 бит         | 1.8 V      |
| GDDR4  | 2006        | 1200        | 4 бит         | 1.8 V      |
|        | 2006        | 1400        | 8 бит         | 1.8 V      |
| GDDR5  | 2008        | 5000        | 8 бит         | 1.5 V      |
| GDDR6  | 2017        | 16000       | 16 бит        | 1.3 V      |
| GDDR6x | 2020        | 21000       | 16 бит        | 1.3 V      |

#### Разрядность шины памяти



Как и тип памяти, зависят от ценового сегмента видеокарты:

- У видеокарт инфрабюджетного ценового сегмента это 64 и 128 бит
- У видеокарт бюджетного ценового сегмента это 128 и 256 (иногда, чаще всего у переходных видеокарт)
- У видеокарт среднего и высшего ценового сегмента это 256, 384, 448, 512, 2\*512 (если видеокарта двухчиповая), 768 и далее

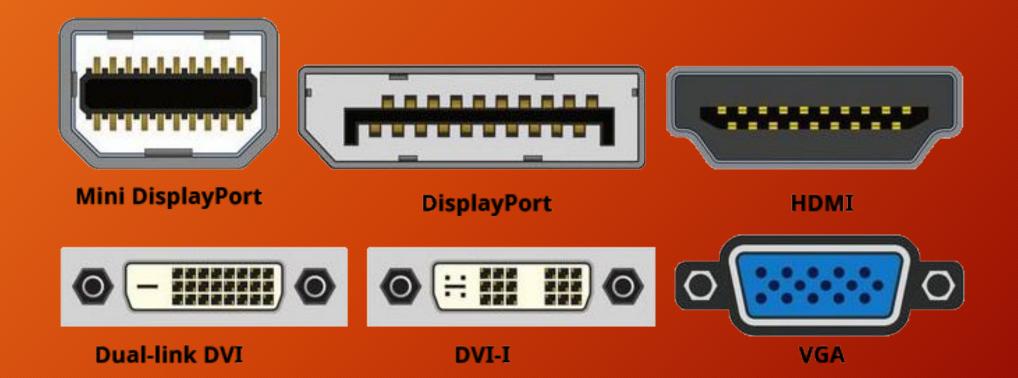
Важнее остальных здесь разрядность шины, ибо она является параметром, определяющим производительность видеопамяти и видеокарты вцелом. Большая разрядность (или, как говорят, ширина шины памяти) позволяет передавать большее количество информации в единицу времени в графическое ядро и обратно (это называется пропускной способностью), что, естественно, обеспечивает большую производительность видеокарты.

Представьте себе ситуацию: Вы пришли в магазин за новой видеокартой. После ознакомления с товаром Вы видите две видеокарты на одном чипе и одного производителя. Читая характеристики, вы обнаруживаете, что типы памяти у них одинаковые, а вот её объем и разрядность шины отличаются. У одной 512 мб и разрядность 256 бит, а у другой 1024 мб и разрядность 128 бит. Как Вы думаете, какую видеокарту лучше выбрать? Исходя из сказанного мною выше, правильным выбором будет видеокарта с 512 мб и 256 битами, ибо пропускная способность оной будет существенно больше, а значит и общая производительность карточки будет отличаться в разы.

#### Тактовая частота видеочипа



Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п. В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту —  $1544 \, \text{МГц}$ .


# Интерфейсы

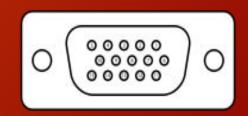


### Интерфейсы подключения



Современные графические карты оснащены преимущественно по одному разъему HDMI, DVI и DisplayPort. Данные выводы являются самыми прогрессивными, быстрыми и стабильными. Каждый из этих интерфейсов имеет свои преимущества и недостатки.

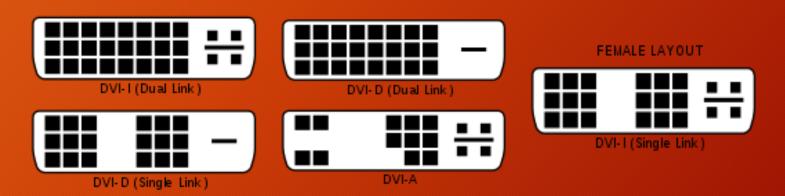



### Интерфейс VGA(D-SUB)



15-контактный субминиатюрный аналоговый разъём для подключения мониторов по стандарту видеоинтерфейса VGA (англ. Video Graphics Array). VGA разработан в 1987 году и предназначен для мониторов на электронно-лучевых трубках. Также данным интерфейсом оснащаются некоторые проигрыватели DVD, многие плазменные и ЖК-телевизоры. VGA работает по обычному принципу горизонтально-вертикальной развертки. Изменение напряжения на RGB-пинах означает изменение яркости свечения светодиодной матрицы. Максимальное напряжение сигнала RGB-пинов составляет 0,7 В макс (входное сопротивление 75 Ом).




К 2010-м годам VGA устарел и активно вытесняется цифровыми интерфейсами DVI, HDMI и DisplayPort. Крупнейшие производители электроники Intel и AMD объявили о полном отказе от поддержки VGA в 2015 году. Большинство мониторов, уже не имеющих разъёма VGA, подключаются к видеоадаптеру с комбинированным DVI-I-выходом посредством переходника.



### Интерфейс DVI



Digital Visual Interface, сокр. DVI (с англ. — «цифровой видеоинтерфейс») — стандарт на интерфейс, предназначенный для передачи видеоизображения на цифровые устройства отображения, такие как жидкокристаллические мониторы, телевизоры и проекторы. Разработан консорциумом Digital Display Working Group. DVI-D - базовый тип DVI интерфейса. Подразумевает только цифровое подключение, поэтому не может использоваться с видеокартами, имеющими только аналоговый выход. Очень широко распространен. DVI-I - расширенный вариант интерфейса DVI-D, наиболее часто встречающийся в настоящее время. Содержит 2 типа сигналов - цифровой и аналоговый. Видеокарты можно подключать как по цифровому, так и по аналоговому соединению, видеокарту с VGA(D-Sub)-выходом можно подключить к нему через простой пассивный переходник или специальным кабелем.



### Интерфейс HDMI



HDMI (High Definition Multimedia Interface). Интерфейс для мультимедиа высокой чёткости, позволяющий передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой копирования (HDCP). Разъём HDMI обеспечивает цифровое DVIсоединение нескольких устройств с помощью соответствующих кабелей. Основное различие между HDMI и DVI в том, что разъём HDMI меньше по размеру, а также поддерживает передачу многоканальных цифровых аудиосигналов. Является заменой аналоговых стандартов подключения, таких как SCART, VGA, YPbPr, RCA, S-Video. Основателями HDMI являются компании Hitachi, Matsushita Electric Industrial, Philips, Silicon Image, Sony и Thomson. Если в наименовании HDMI-кабеля присутствует термин Ethernet, это значит, что с его помощью можно установить подключение к интернету. Такой HDMI-кабель способен полностью заменить сетевой Ethernet-провод.





# Интерфейс HDMI сравнение



| Версия<br>HDMI | 1.0 – 1.2a | 1.4        | 1.4a     | 1.4b      | 2.0       | 2.0a | 2.0b | 2.1 |
|----------------|------------|------------|----------|-----------|-----------|------|------|-----|
| Full HD        | +          | +          | +        | +         | +         | +    | +    | +   |
| 4k UHD         | <u>-</u>   | + ( 24 Гц) |          | + (30 Гц) | + (60 Гц) |      |      |     |
| Dynamic<br>HDR | -          | -          | <u>-</u> | <u>-</u>  | -         | +    | +    | +   |

### Интерфейс HDMI сравнение



#### **HDMI Standard**

- Разрешение составляет 720р с частотой 60 Гц или 1080і с частотой 60 Гц.
- Скорость передачи от 1,782 Гбит/с до 2,25 Гбит/с.
- Поддерживаются все версии HDMI до 1.3

#### HDMI High Speed

- Разрешение 2160р (4K) с частотой 30 Гц.
- 3D-контент передается в Full HD.
- Технология Deep Color увеличивает глубину цвета.
- Скорость передачи не менее 8,16 Гбит/с.
- Поддерживаются все версии HDMI до 1.4.

#### **HDMI Premium High Speed**

- Разрешение 4K UHD с частотой 60 Гц.
- 3D-контент передается также в UHD.
- Поддерживаются HDR и 32 аудиоканала.
- Скорость передачи 18 Гбит/с.
- Поддерживаются все версии HDMI до 2.0.

#### **HDMI Ultra High Speed**

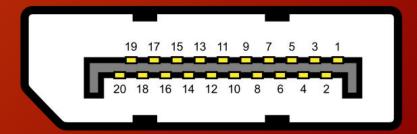
- Разрешение до 8К с частотой 60 Гц.
- Скорость передачи 48 Гбит/с.
- Поддерживаются все версии HDMI до 2.1.

Интерфейс DisplayPort

Стандарт был разработан VESA в 2006 году. Целью было заменить старый DVI. Также как и HDMI передает не только видео, но и аудио.

Одним из конструктивных преимуществ DP по сравнению с HDMI является механизм фиксации штекера в гнезде. Без нажатия механической кнопки кабель не вытащить — это может спасти от сгоревшего порта.

Помимо основного разъема, существует также версия DisplayPort mini, которая применяется в ноутбуках и других компактных устройствах. Например, лэптопы от Apple имеют разъем Thunderbolt 2, который обратно совместим с DP mini.


Распиновка очень похожа на HDMI, только вместо 19 контактов компания VESA использовала 20.

#### Функции DisplayPort:

- DisplayPort Dual-Mode позволяет выдавать сигнал в режиме HDMI/DVI, используя лишь пассивный переходник.
- DisplayPort ALT Mode дает возможность подключиться к устройству с разъемом USB Type-C.
- Multi-Stream Transport позволяет последовательно подключить между собой несколько мониторов, при этом к компьютеру или ноутбуку идет только один кабель.











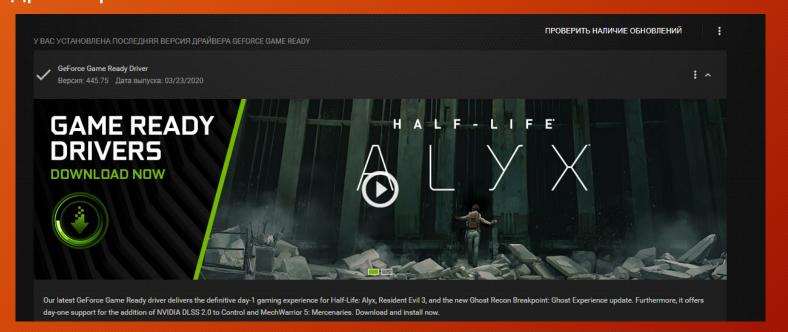
| Версия DP  | Макс. скорость<br>передачи данных | Максимальное<br>доступное<br>разрешение                               | Поддержка HDR | Поддержка FreeSync<br>и G-Sync |  |
|------------|-----------------------------------|-----------------------------------------------------------------------|---------------|--------------------------------|--|
| 1.0 – 1.1a | 8.64 Гбит/с                       | 1080р при 144 Гц<br>1440р при 75 Гц<br>4к при 30 Гц                   |               | Нет                            |  |
| 1.2 – 1.2a | 17,28 Гбит/с                      | 1080р при 240 Гц<br>1440р при 165 Гц<br>4к при 75 Гц                  | Нет           |                                |  |
| 1.3        | 25,92 Гбит/с                      | 1080р при 360 Гц<br>1440р при 240 Гц<br>4к при 120 Гц<br>8к при 30 Гц |               | Да                             |  |
| 1.4 – 1.4a | 25,92 TONITC                      | См. версию 1.3 +<br>4к при 240 Гц *<br>8к при 120 Гц *                | Да            |                                |  |
| 2.0        | 77,37 Гбит/с                      | 4к при 240 Гц<br>8к при 85 Гц                                         |               |                                |  |

# Программное обеспечение



#### Программное обеспечение




**Программное обеспечение** — представляет собой набор специальных программ, позволяющих организовать обработку информации с использованием ПК.

Поскольку без ПО функционирование ПК невозможно в принципе, оно является неотъемлемой составной частью любого ПК и поставляется вместе с его аппаратной частью (hardware).

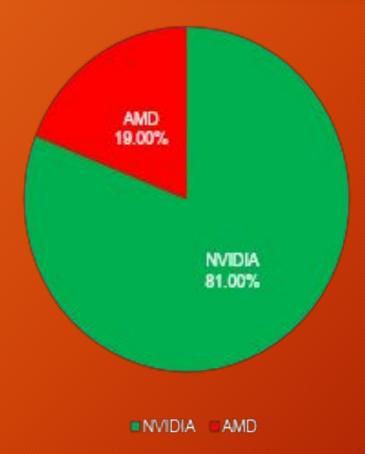
### Драйвер



**Драйвер** — программное обеспечение, с помощью которого другое программное обеспечение получает доступ к аппаратному обеспечению некоторого устройства Для видеокарт драйвер является очень важней составляющей. Он может исправить некоторые проблемы и улучшить производительность. Драйвер надо обновлять примерно раз в месяц, либо с выходом новых игр. Обычно под каждую известную игру выходит драйвер.



#### DirectX




**DirectX** — это набор компонентов в ОС Windows, который позволяет программному обеспечению напрямую взаимодействовать с видео- и аудиооборудованием. Основное предназначение - компьютерные игры, однако он иногда необходим некоторым программам для работы с графикой.



#### Соотношение компаний на рынке видеокарт





Статистика Jon Peddie за 4-й квартал 2021 года

# Компания AMD



#### Компания AMD



**AMD** (Advanced Micro Devices — «продвинутые микроустройства») - американский производитель интегральной микросхемной электроники, один из крупнейших производителей центральных процессоров, графических процессоров и адаптеров, материнских плат и чипсетов для них, также твердотельные накопители. Основана в 1969 году.

Ключевым этапом в развитии компании можно выделить 2006 год, когда AMD поглотила канадское предприятие ATI Technologies, которое специализировалось на разработке графических процессоров. С этого момента, AMD также занялась разработками в сфере графических процессоров. Поглощение также открыло для компании AMD новые возможности развития, включая разработку гибридных процессоров с интегрированной графикой.

Продукция производителя всегда отличалась привлекательным соотношением производительность/цена при достаточно демократичной розничной стоимости.

Одновременная работа над CPU и GPU позволила AMD стать самым крупным поставщиком решений для консолей, все ведущие консоли последних поколений работают на мощностях AMD.

# Технологии AMD



#### Технологии AMD



**AMD EyeFinity** — технология компании AMD, позволяет использовать до 6 мониторов одновременно как в играх, так и в других задачах при работе с компьютером.

**AMD FreeSync** — технология предназначена для устранения разрывов изображения и увеличения плавности картинки, поддерживается не всеми мониторами и видеокартами AMD.

 $AMD\ TressFX\ Hair$  — система, моделирующая физические свойства волос в реальном времени.

**API Vulcan** — программный интерфейс, поддерживает низкоуровневое управление, обеспечивая большую производительность, низкую нагрузку на центральный процессор, и улучшенное качество изображения. Поддерживается не только видеокартами компании AMD, но и видеоадаптерами производства NVIDIA.

**HD3D** — технология компании AMD, аналогичная NVIDIA 3D Vision. Только для работы HD3D не требуется специальных стереоскопических очков - подойдут любые 3D-очки.

**Виртуальное сверхвысокое разрешение (VSR)**— технология компании AMD, симулирует избыточную выборку сглаживания в играх, не поддерживающих избыточную выборку сглаживания.

#### Технологии AMD



**AMD CrossFire** — использует мощь двух и более параллельно работающих дискретных видеокарт для значительного увеличения игровой производительности.

**FidelityFX Super Resolution (FSR)** — технология временного масштабирования изображения, разработанная AMD для использования в режиме реального времени в некоторых видеоиграх, для повышения разрешения изображений с более низким разрешением до более высокого разрешения для отображения на более качественных экранах.

**AMD Smart Access Memory** — позволяет центральному процессору задействовать сразу весь массив видеопамяти видеокарты, а не обращаться только к её части объёмом до 256 Мбайт.

**Ray Accelerator** — это специализированное аппаратное устройство, которое обрабатывает пересечение лучей, обеспечивая многократное ускорение пересечения по сравнению с программной реализацией.

**AMD Infinity Cache** — новый уровнень кэш-памяти, обеспечивающий высокую пропускную способность при более низком энергопотреблении и меньших задержках.

# Компания NVIDIA



#### Компания NVIDIA



**NVIDIA** - крупнейшая американская компания (1993 г.), деятельность которой направлена на разработку и производство графических процессоров (GPU), большая часть продаж приходится на видеокарты.

Целевыми рынками компании являются индустрия компьютерных игр и сфера профессиональной визуализации. Очень важным звеном для компании является рынок искусственного интеллекта, который с каждым годом добивается всё больших достижений в области разработки ИИ.

Графические разработки процессоров зачастую опережали конкурентов и быстро развивались, радуя своих покупателей высокой производительностью и оптимальной ценой. Данная закономерность является актуальной и по сей день.

## Технологии NVIDIA



#### Технологии NVIDIA



**NVIDIA G-Sync** — устранение разрывов экрана, т.е. заставляет видеодисплей адаптироваться к частоте кадров устройства вывода.

**NVIDIA Optimus** — объединение преимуществ (производительность и работа батареи) встроенной и дискретной графики, применяется только в ноутбуках.

**NVIDIA CUDA** — позволяет существенно увеличить вычислительную производительность благодаря использованию графических процессоров NVIDIA.

**NVIDIA 3D Vision** — необходим для работы с 3D графикой; разделяет изображения для левого и правого глаз, для этого необходимы стерео очки.

**NVIDIA PhysX** — обеспечивает более реалистичное и насыщенное взаимодействие окружений (взрывы, дым, пыль и обломки) и персонажей, дающее яркие впечатления от игры.

**NVIDIA Hairworks** — используется для создания более динамичных и реалистичных волосяных покровов на игровых объектах.

#### Технологии NVIDIA



**NVIDIA SLI** — Позволяет нескольким графическим процессорам соединяться и работать на одном ПК через мост SLI для быстрой передачи данных между двумя устройствами.

**NVIDIA** *OptiX* — реализует рендеринг методом трассировки лучей в режиме реального времени при помощи графических процессоров производства NVIDIA.

**NVIDIA DLSS** — позволяет использовать более высокие графические настройки и/или частоту кадров для заданного выходного разрешения.

**NVIDIA Reflex** — это новый набор API для разработчиков игр, позволяющий определить и снизить задержку рендеринга.

**NVIDIA RTX** — это технология трассировки лучей в реальном времени и искусственного интеллекта, одно из самых важных достижений NVIDIA в компьютерной графике, которая представляет собой полноценную платформу, позволяющую создавать невероятные проекты в 3D, фотореалистичные симуляции и впечатляющие визуальные эффекты.

# Примеры и тесты



# Видеокарты NVIDIA GeForce RTX 30 серии



### Видеокарты NVIDIA GeForce RTX 30 серии



**GeForce 30-ого поколения**— это семейство графических процессоров компании NVIDIA. Серия была анонсирована 1 сентября 2020 года, в годовщину выпуска первого процессора серии GeForce.

Видеокарты GeForce RTX 30X0 созданы на базе Ampere, архитектуры NVIDIA RTX нового поколения, и оснащены вторым поколением ядер для трассировки лучей, третьим поколением тензорных ядер и новыми потоковыми мультипроцессорами. Благодаря такой комбинации пользователи получают более реалистичную графику, прирост FPS и поддержку технологий на базе ИИ для игр, стриминга и обработки графики и видео.



#### **NVIDIA GeForce RTX 3050**



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 24,2 см: 11,2 см

Ядра NVIDIA CUDA - 2560

Тактовая частота с ускорением - 1,78 Гц

Базовая тактовая частота - 1,55 Гц

Стандартная конфигурация памяти - 8 ГБ GDDR6

Разрядность шины памяти - 128 бит

Максимальная температура видеокарты - 93°C

Энергопотребление - 130 Вт

Рекомендуемые системные требования по питанию - 550 Вт

Дополнительные разъемы питания - Один 8-пиновый разъем РСІе



#### NVIDIA GeForce RTX 3060



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 24,2 см: 11,2 см

Ядра NVIDIA CUDA - 3584

Тактовая частота с ускорением - 1,78 Гц

Базовая тактовая частота - 1,32 Гц

Стандартная конфигурация памяти - 12 ГБ GDDR6

Разрядность шины памяти - 192 бит

Максимальная температура видеокарты - 93°C

Энергопотребление - 170 Вт

Рекомендуемые системные требования по питанию - 550 Вт

Дополнительные разъемы питания - Один 8-пиновый разъем РСІе



#### **NVIDIA GeForce RTX 3070**



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 24,2 см: 11,2 см

Ядра NVIDIA CUDA - 5888

Тактовая частота с ускорением - 1,73 Гц

Базовая тактовая частота - 1,50 Гц

Стандартная конфигурация памяти - 8 ГБ GDDR6

Разрядность шины памяти - 256 бит

Максимальная температура видеокарты - 93°C

Энергопотребление - 220 Вт

Рекомендуемые системные требования по питанию - 650 Вт

Дополнительные разъемы питания - Один 8-пиновый разъем РСІе



## **NVIDIA GeForce RTX 3080**



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 28,5 см: 11,2 см

Ядра NVIDIA CUDA - 8960 / 8704

Тактовая частота с ускорением - 1,71 Гц

Базовая тактовая частота - 1,26 / 1,44 Гц

Стандартная конфигурация памяти - 10/12 ГБ GDDR6X

Разрядность шины памяти - 384 / 320 бит

Максимальная температура видеокарты - 93°C

Энергопотребление - 350 / 320 Вт

Рекомендуемые системные требования по питанию - 750 Вт

Дополнительные разъемы питания - Два 8-пиновых разъема PCle



## **NVIDIA GeForce RTX 3090**



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 31,3 см: 13,8 см

Ядра NVIDIA CUDA - 10 496

Тактовая частота с ускорением - 1,70 Гц

Базовая тактовая частота - 1,40 Гц

Стандартная конфигурация памяти - 24 ГБ GDDR6X

Разрядность шины памяти - 384 бит

Максимальная температура видеокарты - 93°C

Энергопотребление - 350 Вт

Рекомендуемые системные требования по питанию - 750 Вт

Дополнительные разъемы питания - Два 8-пиновых разъема РСІе



# Видеокарты AMD Radeon RX 6000 серии



## Видеокарты AMD Radeon RX 6000 серии



Radeon RX 6000 (также известная под названием Big Navi) — серия видеокарт, производимых Radeon Technologies Group, структурным подразделением компании AMD. Видеокарты основаны на новой архитектуре RDNA 2. Анонс серии состоялся 28 октября 2020 года.

В линейке серии были анонсированы видеокарты Radeon RX 6600 XT, Radeon RX 6700, XT RX 6800, RX 6800 и XT RX 6900 XT. Первая серия графических карт AMD с поддержкой трассировки лучей.



## Radeon RX 6600 XT



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 21,5 см : 12,8 см

Ядра Navi 23- 2048

Максимальная тактовая частота - 2,5 Гц

Стандартная конфигурация памяти - 8 ГБ

Разрядность шины памяти - 128 бит

Максимальная температура видеокарты - 83°C

Энергопотребление - 160 Вт

Рекомендуемые системные требования по питанию - 450 Вт

Дополнительные разъемы питания - Один 8-пиновый разъем РСІе



## Radeon RX 6700 XT



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 28,1 см: 11,5 см

Ядра Navi 22 - 2560

Максимальная тактовая частота - 2,5 Гц

Стандартная конфигурация памяти -12 ГБ GDDR6

Разрядность шины памяти - 192 бит

Максимальная температура видеокарты - 85°C

Энергопотребление - 230 Вт

Рекомендуемые системные требования по питанию - 550 Вт

Дополнительные разъемы питания - Один 6-пиновый и один 8пиновый разъем PCIe



## Radeon RX 6800



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 26,7 см: 12,0 см

Ядра Navi 21 XL - 3840

Максимальная тактовая частота - 2,1 Гц

Стандартная конфигурация памяти - 16 ГБ

Разрядность шины памяти - 256 бит

Максимальная температура видеокарты - 80°C

Энергопотребление - 250 Вт

Рекомендуемые системные требования по питанию - 650 Вт

Дополнительные разъемы питания - 2 х 8-пиновых разъемов РСІе



## Radeon RX 6800 XT



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 31,0 см : 13,4 см

Ядра Navi 21 - 4608

Максимальная тактовая частота - 2,4 Гц

Стандартная конфигурация памяти - 16 ГБ

Разрядность шины памяти - 256 бит

Максимальная температура видеокарты - 70°C

Энергопотребление - 300 Вт

Рекомендуемые системные требования по питанию - 700 Вт

Дополнительные разъемы питания - 2 х 8-пиновых разъемов РСІе



## Radeon RX 6900 XT



#### СПЕЦИФИКАЦИИ ВИДЕОКАРТЫ:

Длина и ширина видеокарты - 32,0 см: 13,5 см

Ядра Navi 21 - 5120

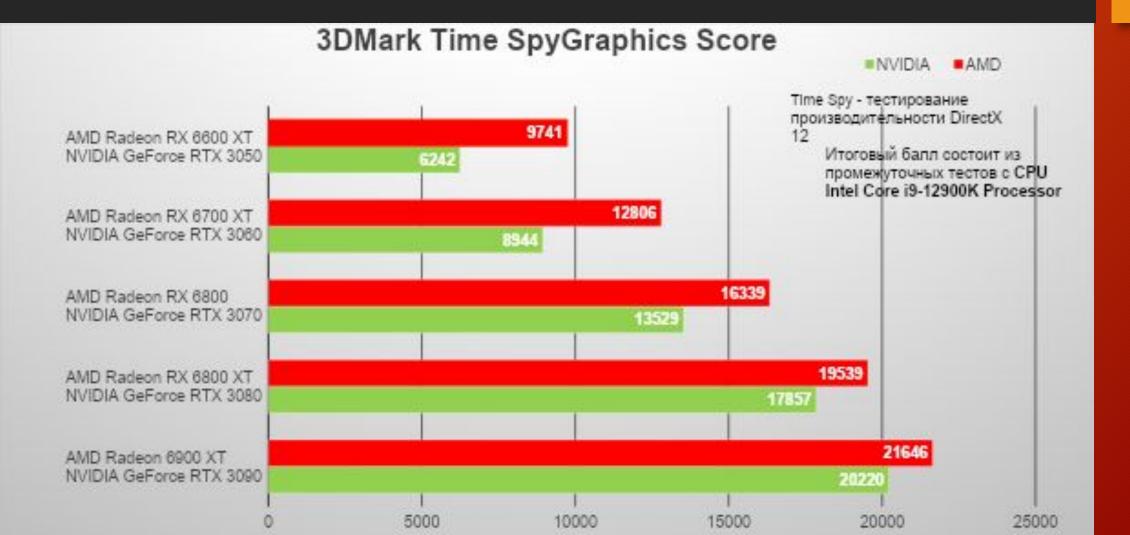
Максимальная тактовая частота - 2,8 Гц

Стандартная конфигурация памяти - 16 ГБ

Разрядность шины памяти - 256 бит

Максимальная температура видеокарты - 79°C

Энергопотребление - 300 Вт


Рекомендуемые системные требования по питанию - 700 Вт

Разъемы питания - 2 x 8-пиновых разъемов PCIe



# Сравнение производительности в синтетических тестах видеокарт AMD Radeon RX 6000 серии и видеокарт NVIDIA RTX 30 серии





### Сравнение производительности FPS видеокарт AMD Radeon RX 6000 серии и видеокарт NVIDIA 30 серии на Ultra настройках в Full HD и в 4k





# Вопросы



## Вопросы



- 1. Устройство видеокарты.
- 2. Внешние интерфейсы подключения.
- 3. Характеристики версий HDMI?
- 4. Характеристики версий DisplayPort?
- 5. **Характеристики видеокарты.**
- 6. Типы видеопамяти?
- 7. Что такое DirectX?
- 8. Производители видеокарт.
- 9. Технологии АМD
- 10. Технологии NVIDIA

## Вопросы



- 1. Какая деталь является самой важной в видеокарте (от неё зависит быстродействие и мощность всего устройства)?
  - а) Видеоконтроллер б) Графический процессор в) Видеопамять г) ПЗУ
  - Какие интерфейсы подключения видеокарты существуют?
    - a) Display Port, HDMI, MSA, DWI 6) Display Port, VGA, HDMI, DWI B) Mirror Port, Display Port, VGA, HDMI r) Display Port, HDMI, VGA, DVI
- Что такое программное обеспечение?
  - а) Файловая система б) Набор программ, позволяющих организовать обработку информации с использованием ПК
  - в) Операционная система г) Совокупность файлов и папок
- 4. Как называется технология NVIDIA, позволяющая использовать несколько видеокарт в одном ПК?
  - a) DLSS б) RTX в) SLI г) CUDA
- 5. Какая версия HDMI поддерживает 4к 60гц?
  - а) 2.0 б) 1.0 в) 1.4 г) 1.4b
- 6. Частота GDDR6 памяти?
  - а) 21 ГГц б) 20 ГГц в) 22 ГГЦ г) 18 ГГц
  - Какие версии DisplayPort поддерживают 8к?
    - а) 1.1, 2.0, 1.2a б) 1.3, 1.4, 1.2a в) 1.2, 1.2a, 2.0 г) 1.3, 1.4, 2.0
- 8. Какой видеокарты нет в линейке NVIDIA 30 серии?
  - а) 3090 б) 3070 в) 3050 г) 3030
- 9. Какие современные типы видеопамяти существуют?
  - a) GDDR5, GDDR6, GDDR6s 6) GDDR5, GDDR5s, GDDR6 в) GDDR5, GDDR6, GDDR6x г) GDDR6, GDDR6s, GDDR6x
- 0. Какой канал связи поддерживает DVI-I?
  - а) только аналоговый б) только цифровой в) аналоговый и цифровой г) ничего из перечисленного