LECTURE 1

Introduction to Digital Systems. Combinational
Circuits. Digital Integrated Circuits.

Lecture 1
Dana Utebayeva

Outline

* Basic concepts
* Simple gates
 Completeness

* Logic functions
* Expressing logic functions
* Equivalence

* Boolean algebra
* Boolean identities
* Logical equivalence

* Logic Circuit Design Process

* Deriving logical expressions
e Sum-of-products form
* Product-of-sums form

* Simplifying logical
expressions
* Algebraic manipulation

e Karnaugh map method
* Quine-McCluskey method

* Generalized gates
* Multiple outputs

* Implementation using other
gates (NAND and XOR)

Introduction

* Hardware consists of a few simple building blocks
* These are called logic gates
« AND, OR, NOT, ...
« NAND, NOR, XOR, ...

* Logic gates are built using transistors

* NOT gate can be implemented by a single transistor
* AND gate requires 3 transistors

* Transistors are the fundamental devices
* Pentium consists of 3 million transistors
* Compaq Alpha consists of 9 million transistors
* Now we can build chips with more than 100 million transistors

Basic Concepts

* Simple gates
« AND
* OR
« NOT

* Functionality can be expressed by a
truth table

» A truth table lists output for each possible
input combination

e Other methods

* Logic expressions
* Logic diagrams

NOT gate

Logic symbol

A B F
0 O 0
0 1 0
1 0 0
1 1 1
A B F
0 0 0
0 1 1
1 0 1
1 1 1
YES
0 1
1o
Truth table

Basic Concepts (cont’d)

» Additional useful gates
« NAND
« NOR
* XOR

* NAND = AND + NOT
* NOR =OR + NOT

* XOR implements exclusive-OR
function

* NAND and NOR gates require only 2
transistors
* AND and OR need 3 transistors!

}
F
B

NAND gate

A
o
B
NOR gate
s)
F
B

XOR gate

Logic symbol

A B F
0 O 1
0 1 1
1 0 1
1 1 0
A B F
0 O 1
0 1 0
1 0 0
1 1 0
A B F
0 O 0
0 1 1
1 O 1
1 1 0

Truth table

Basic Concepts (cont’d)

e Number of functions
* With N logical variables, we can define
22N functions

* Some of them are useful
« AND, NAND, NOR, XOR, ...
* Some are not useful:
e Outputisalways 1
e Outputis always O

* “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

* Complete sets

* A set of gates is complete
* if we can implement any logical function using only the type of gates in the set
* You can uses as many gates as you want
* Some example complete sets
 {AND, OR, NOT} Not a rimimmaicomplete set
« {AND, NOT}
* {OR, NOT}
« {NAND}
* {NOR}
* Minimal complete set
* A complete set with no redundant elements.

Basic Concepts (cont’d)

* Proving NAND gate is universal

A_

B_

A4 v

NOT gate

At

B¢

Y

OR gate

Basic Concepts (cont’d)

* Proving NOR gate is universal

T

NOT gate AND gate

Logic Chips

* Basic building block:

* Transistor

* Three connection points
* Base
* Emitter
* Collector

* Transistor can operate
* Linear mode
* Used in amplifiers
e Switching mode
* Used to implement digital circuits

Base

Collector

Emitter

Logic Chips (cont’d)

T Vee

(f Ve

(b)

T Vee

Logic Chips (cont’d)

* Low voltage level: < 0.4V
* High voltage level: > 2.4V

* Positive logic:
* Low voltage represents 0
* High voltage represents 1

* Negative logic:
* High voltage represents 0
* Low voltage represents 1

* Propagation delay
* Delay from input to output
* Typical value: 5-10 ns

Volts

5 —

4 -
High level

3 —]

2 .=—Undefined range

1 (forbidden)
Low level

Logic Chips (cont’d)

0EpL 0zhL
8 1L aND 8 [L aND
6] 9 6] —9
01] Fﬁum o1] Iﬁum
n— juv 1] It
Al ¢ . ml
€] 1t ¢ 7
297 b1 I A bl |
] ~ 1] ~]
0L 98vL #0PL
8] L AN 8 JL aNo wﬂ@]L QN
6 9 mﬂy %u@ 6] ﬁuo
01] s 01 _HF EH_W 0l _HMNV s
1] It 11 ¥ [wauv
U] ¢ O D M Tum N:H@ P
¢ —7 ¢ _Hﬁ QH_N i ﬁ_IH_N
20A $1] ~ 1 A 11] ~ 1 A BT])NPTH_ I
L 80fL 007L
8] L a8 L a8 —— NG
6] 9 61 9 6] 9
o1] s 01 s o1] s
1 It . —r 1 —y
i ¢ u] ¢ U] ¢
€])z im 7 €O L
DAY] s 1 A BT[] - 1 A BT[] - 1

Logic Chips (cont’d)

* Integration levels

* SSI (small scale integration)
* Introduced in late 1960s
» 1-10 gates (previous examples)

* MSI (medium scale integration)
* Introduced in late 1960s
* 10-100 gates

e LS| (large scale integration)
* Introduced in early 1970s
* 100-10,000 gates
 VLSI (very large scale integration)

* Introduced in late 1970s
* More than 10,000 gates

Logic Functions

e Logical functions can be expressed in several ways:
* Truth table
* Logical expressions
* Graphical form

* Example:
* Majority function
e Output is one whenever majority of inputs is 1
* We use 3-input majority function

Logic Functions (cont’d)

3-input majority function

(o)
(@)
=

* Logical expression form

F=AB+BC+AC
B C

=P

_ B, B, P, O OO O »

R —r O O = » O O
b O - O - O = O
R ~ O - O O O

0y

Logical Equivalence

* All three circuits implement F = A B function

}
F].
B

oy

By

~o
~ D "
o)

pE

(©)

Logical Equivalence (cont’d)

* Proving logical equivalence of two circuits
* Derive the logical expression for the output of each circuit

* Show that these two expressions are equivalent

* Two ways:
* You can use the truth table method

* For every combination of inputs, if both expressions yield the same output, they are
equivalent

* Good for logical expressions with small number of variables
* You can also use algebraic manipulation
* Need Boolean identities

Logical Equivalence (cont’d)

* Derivation of logical expression from a circuit

* Trace from the input to output
* Write down intermediate logical expressions along the path

A —®o ® Dﬁs
D&+B)(A+§)
A +
A

vy
®

(A +B) (A +B) (A + B)

B
+ B

mnl

Logical Equivalence (cont’d)

* Proving logical equivalence: Truth table method

Thanks for your
attention

LECTURE 2

FUNDAMENTALS
OF LOGICAL DESIGN

Dana Utebayeva

SIS 2
“Binary systems”

d.utebaveva@iitu.edu.kz

¥ o

DECIMAL TO BINARY
CONVERSION

Convert Decimal Number to a
Binary Number:

Decimal 7392

Binary

oy

1110011100000

QUIZ for SIS Project 1

Conversion of Decimal Number to a
Binary Number:

* Dana Zh. Utebavyeva:

https://docs.google.com/forms/d/e/1FAIpQLSeKQMnOv 6GEpZ-ROulxY7bV...

» ony6nunkoBaHo B 13507 Fundamentals of Logic Design (YTebaeBa [l..) 2021-2022/1 nnu
O6wwun B Tuesday, September 14, 2021 12:19:40 PM

FUNDAMENTALS
OF LOGICAL DESIGN

Dana Utebayeva

Lecture 2
“Number systems and Codes”

d.utebaveva@iitu.edu.kz

¥ o

is to be familiar with number
systems and code in digital electronics.

Outline of Lecture

Counting in Decimal and Electronic

Binary Translators

Place Value Hexadecimal
Numbers

Binary to Decimal
Conversion Octal Numbers

Decimal to Binary
Conversion

Number systems
N(b)={a, b""'+a, b"*+-+ab'+a,b"}

Radix and subscript

N(b) -~ an-l an—2 al aO

COUNTING IN
DECIMAL AND BINARY

Number System -
Code using symbols that refer to
a number of items.

Decimal Number System -
Uses ten symbols (base 10 system)

Binary System -
Uses two symbols (base 2 system)

Generalized approach of
Number systems

A number with a decimal point is
represented by series of
coefficients

AsAsdxqdog.A— 1A -20-3

PLACE VALUE

* Numeric value of symbols in different positions.

e Example - Place value in binary system:

Place 8s 4s 28 Is
Value

Binary Yes Yes No No
Number 1 1 0 0

RESULT: Binary 1100 = decimal 8 +4 + 0 + 0 = decimal 12

BINARY TO DECIMAL
CONVERSION

Convert Binary Number 110011
to a Decimal Number:

Binary 1 1 0 0 1 1

Y oY oY Yy

Decimal 32 +16 +0 + 0+ 2 + 1=|51

Convert the following binary
numbers into decimal numbers:

Binary 1001 = 9
Binary 1111 = 15

Binary 0010 = 2

DECIMAL TO BINARY
CONVERSION

Divide by 2 Process

Decimal# 13 = 2 = 6 remainder 1

6 -~ 2 = 3 remainder 0

3 - 2 =1 remainder 1

I - 2 = 0remainder 1 —¢

1

— | <

O | =

Convert the following decimal
numbers 1nto binary:

Decimal 11 = 1011
0100

Decimal 4

Decimal 17 = 10001

ELECTRONIC TRANSLATORS

Devices that convert from decimal to
binary numbers and from binary to
decimal numbers.

Encoders -

translates from decimal to binary
Decoders -

translates from binary to decimal

ELECTRONIC ENCODER -
DECIMAL TO BINARY

Binary output
0011

Decimal

to
— iy J
3 inary

Encoder

Decimal input

e Encoders are available in IC form.

e This encoder translates from decimal 1nput
to binary (BCD) output.

ELECTRONIC DECODING:
BINARY TO DECIMAL

Binary input Decimal output
0100
Binary-to-
7-Segment
Decoder/
Driver

e Electronic decoders are available in IC form.

e This decoder translates from binary to decimal.

e Deccimals are shown on an 7-segment LED display.
e This decoder also drives the 7-segment display.

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System
0-9,A,B,C,D,E, F

Decimal Binary Hexadecimal
1 0001 1

9 1001 9

10 1010 A
15

6

1111 F
10000 10

HEXADECIMAL AND
BINARY CONVERSIONS

e Hexadecimal to Binary Conversion
Hexadecimal C 3

\ A

Binary 1100 0011

eBinary to Hexadecimal Conversion

Binary 1110 1010

v v

Hexadecimal E A

DECIMAL TO HEXADECIMAL
CONVERSION

Divide by 16 Process

Decimal# 47 = 16 = 2 remainder 15

2 = 16 = 0 remainder 2
_l \ /

[2 F |

HEXADECIMAL TO DECIMAL
CONVERSION

Convert hexadecimal number 2DB
to a decimal number

Place 256s 16s Is
Value
Hexadecimal 2 D B

(256x2) (16x13) (1x11)

Decimal 512 + 208 + 11 = ff]

Convert Hexadecimal number A6 to Binary

Al 1010 0110 (Binary)

Convert Hexadecimal number 16 to Decimal
16-

Convert Decimal 63 to Hexadecimal

63 = RIWBEELEGINE

OCTAL NUMBERS

Uses 8 symbols -Base 8 System

0,1,2,3,4,5,6,7

Decimal

1

O OO0 1 O

Binary Octal
001 1
110 6
111 7

001 000 10

001 001 11

PRACTICAL SUGGESTION ON
NUMBER SYSTEM CONVERSIONS

® Use a scientific calculator

® Most scientific calculators have DEC, BIN,
OCT, and HEX modes and can either

convert between codes or perform

arithmetic in different number systems.

® Most scientific calculators also have other

functions that are valuable in digital
electronics such as AND, OR, NOT,
XOR, and XNOR logic functions.

SIS project 1
*1) first page (Names, Title: “Binary systems”)
*2) Outline (['NnaH)
* 3) Part I: (images from your “kOHCNeKT”)
*4) Part Il: Upload/insert your screens from your

Quiz
*5) Part: Assignments: screens from your copybook
*6) About calculators

Attendance for Lecture 2

* Dana Zh. Utebayeva:
https://docs.google.com/forms/d/e/1FAlpQLSfotGeOUvqjykd78SYCT
WEU...

e onyonmkoBaHo B 13507 Fundamentals of Logic Design (YTebaeBa
[l..) 2021-2022/1 nnn Obwnm B Tuesday, September 14, 2021
1:46:25 PM

LECTURE 3-4

Outline

* Binary numbers * Deriving logical expressions
 Logic States e Sum-of-products form

* Implementation * Product-of-sums form

* The Buffer Logic Gate using * Generalized gates
n-p-n transistors

. . . * Multiple outputs
 Logic Gates using transistors

* Implementation using other

* Logic functions gates (NAND and XOR)

* Expressing logic functions
 Building block diagrams

* Boolean algebra
* Boolean algebra laws

* Logic Circuit Design Process

POS — product of sums

Logic Gates

* Simple gates
« AND
* OR
« NOT

* Functionality can be expressed by a
truth table

» A truth table lists output for each possible
input combination

e Other methods

* Logic expressions
* Logic diagrams

NOT gate

Logic symbol

A B F
0 O 0
0 1 0
1 0 0
1 1 1
A B F
0 0 0
0 1 1
1 0 1
1 1 1
YES
0 1
1o
Truth table

Basic Concepts (cont’d)

» Additional useful gates
« NAND
« NOR
* XOR

* NAND = AND + NOT
* NOR =OR + NOT

* XOR implements exclusive-OR
function

* NAND and NOR gates require only 2
transistors
* AND and OR need 3 transistors!

}
F
B

NAND gate

A
o
B
NOR gate
s)
F
B

XOR gate

Logic symbol

A B F
0 O 1
0 1 1
1 0 1
1 1 0
A B F
0 O 1
0 1 0
1 0 0
1 1 0
A B F
0 O 0
0 1 1
1 O 1
1 1 0

Truth table

Basic Concepts (cont’d)

e Number of functions
* With N logical variables, we can define
22N functions

* Some of them are useful
« AND, NAND, NOR, XOR, ...
* Some are not useful:
e Outputisalways 1
e Outputis always O

* “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

* Complete sets

* A set of gates is complete
* if we can implement any logical function using only the type of gates in the set
* You can uses as many gates as you want
* Some example complete sets
 {AND, OR, NOT} Not a rimimmaicomplete set
« {AND, NOT}
* {OR, NOT}
« {NAND}
* {NOR}
* Minimal complete set
* A complete set with no redundant elements.

Basic Concepts (cont’d)

* Proving NAND gate is universal

A_

B_

A4 v

NOT gate

At

B¢

Y

OR gate

Basic Concepts (cont’d)

* Proving NOR gate is universal

T

NOT gate AND gate

Logic Chips

* Basic building block:

* Transistor

* Three connection points
* Base
* Emitter
* Collector

* Transistor can operate
* Linear mode
* Used in amplifiers
e Switching mode
* Used to implement digital circuits

Base

Collector

Emitter

Logic Chips (cont’d)

T Vee

(f Ve

(b)

T Vee

Logic Chips (cont’d)

* Low voltage level: < 0.4V
* High voltage level: > 2.4V

* Positive logic:
* Low voltage represents 0
* High voltage represents 1

* Negative logic:
* High voltage represents 0
* Low voltage represents 1

* Propagation delay
* Delay from input to output
* Typical value: 5-10 ns

Volts

5 —

4 -
High level

3 —]

2 .=—Undefined range

1 (forbidden)
Low level

Logic Chips (cont’d)

0EpL 0zhL
8 1L aND 8 [L aND
6] 9 6] —9
01 Fﬁum o] Iﬁum
n— juv 1] It
i ¢ aim ml
€] 1< el 17
297 b1 I A1 I
] ~]] ~]
0hL 98pL PObL
8] L AN 8 JL aNo wﬂ@
6 9 mﬂw %u@ 6] h
01] s 01 _HF EH: 0l _HMNV
1] It 11 ¥ [Nmuv
U] ¢ O D M Tum N:H@ P
¢ —7 ¢ _Hﬁ QH_N i W
20A $1] ~ 1 A 11] ~ 1 A BT] ~
zehL 80fL 007L
8] L a8 L a8 ——
6} 19 6] 19 6[
o1] s 01 s o1]
(AN w4 11 ik 11
i ¢ u] ¢ U] ¢
€])z im 7 €O
DAY [] s 1 DAY [] - 1 AT [] -

]L aND
19
s

¢

)

L aNo
19
s

—y

e

LT

Logic Chips (cont’d)

* Integration levels

* SSI (small scale integration)
* Introduced in late 1960s
» 1-10 gates (previous examples)

* MSI (medium scale integration)
* Introduced in late 1960s
* 10-100 gates

e LS| (large scale integration)
* Introduced in early 1970s
* 100-10,000 gates
 VLSI (very large scale integration)

* Introduced in late 1970s
* More than 10,000 gates

Logic Functions

e Logical functions can be expressed in several ways:
* Truth table
* Logical expressions
* Graphical form

* Example:
* Majority function
e Output is one whenever majority of inputs is 1
* We use 3-input majority function

Logic Functions (cont’d)

3-input majority function « Logical expression form
B CF=AB+BC+AC
A B C F
0O 0 0 O * j
0 0 1 0 t
O 1 0 O
T —= >
O 1 1 1 *—
1 0 0 O
 J
1 0 1 1 }
1 1 0 1 1
1 1 1 1

Logical Equivalence

* All three circuits implement F = A B function

}
F].
B

oy

By

~o
~ D "
o)

pE

(©)

Logical Equivalence (cont’d)

* Proving logical equivalence of two circuits
* Derive the logical expression for the output of each circuit

* Show that these two expressions are equivalent

* Two ways:
* You can use the truth table method

* For every combination of inputs, if both expressions yield the same output, they are
equivalent

* Good for logical expressions with small number of variables
* You can also use algebraic manipulation
* Need Boolean identities

Logical Equivalence (cont’d)

* Derivation of logical expression from a circuit

* Trace from the input to output
* Write down intermediate logical expressions along the path

A —®o ® Dﬁs
D&+B)(A+§)
A +
A

vy
®

(A +B) (A +B) (A + B)

B
+ B

mnl

Logical Equivalence (cont’d)

* Proving logical equivalence: Truth table method

Thanks for your
attention

LECTURE 4

#3 Boolean Algebra and Digital Logic Gates.

#4 Combinational logic design. Completely and
Incompletely Specified Logic Functions. Design of a
combinational Circuits.

Lecture 3 -4
Dana Utebayeva

Outline

* Binary numbers * Deriving logical expressions
 Logic States e Sum-of-products form

* Implementation * Product-of-sums form

* The Buffer Logic Gate using * Generalized gates
n-p-n transistors

. . . * Multiple outputs
 Logic Gates using transistors

* Implementation using other

* Logic functions gates (NAND and XOR)

* Expressing logic functions
 Building block diagrams

* Boolean algebra
* Boolean algebra laws

* Logic Circuit Design Process

Basic Concepts (cont’d)

e Number of functions
* With N logical variables, we can define
22N functions

* Some of them are useful
« AND, NAND, NOR, XOR, ...
* Some are not useful:
e Outputisalways 1
e Outputis always O

* “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

* Complete sets

* A set of gates is complete
* if we can implement any logical function using only the type of gates in the set
* You can uses as many gates as you want
* Some example complete sets
 {AND, OR, NOT} Not a rimimmaicomplete set
« {AND, NOT}
* {OR, NOT}
« {NAND}
* {NOR}
* Minimal complete set
* A complete set with no redundant elements.

Basic Concepts (cont’d)

* Proving NAND gate is universal

A_

B_

A4 v

NOT gate

At

B¢

Y

OR gate

Basic Concepts (cont’d)

* Proving NOR gate is universal

T

NOT gate AND gate

Logic Chips

* Basic building block:

* Transistor

* Three connection points
* Base
* Emitter
* Collector

* Transistor can operate
* Linear mode
* Used in amplifiers
e Switching mode
* Used to implement digital circuits

Base

Collector

Emitter

Logic Chips (cont’d)

T Vee

(f Ve

(b)

T Vee

Logic Chips (cont’d)

* Low voltage level: < 0.4V
* High voltage level: > 2.4V

* Positive logic:
* Low voltage represents 0
* High voltage represents 1

* Negative logic:
* High voltage represents 0
* Low voltage represents 1

* Propagation delay
* Delay from input to output
* Typical value: 5-10 ns

Volts

5 —

4 -
High level

3 —]

2 .=—Undefined range

1 (forbidden)
Low level

Logic Chips (cont’d)

0EpL 0zhL
8 1L aND 8 [L aND
6] 9 6] —9
01 Fﬁum o] Iﬁum
n— juv 1] It
i ¢ aim ml
€] 1< el 17
297 b1 I A1 I
] ~]] ~]
0hL 98pL PObL
8] L AN 8 JL aNo wﬂ@
6 9 mﬂw %u@ 6] h
01] s 01 _HF EH: 0l _HMNV
1] It 11 ¥ [Nmuv
U] ¢ O D M Tum N:H@ P
¢ —7 ¢ _Hﬁ QH_N i W
20A $1] ~ 1 A 11] ~ 1 A BT] ~
zehL 80fL 007L
8] L a8 L a8 ——
6} 19 6] 19 6[
o1] s 01 s o1]
(AN w4 11 ik 11
i ¢ u] ¢ U] ¢
€])z im 7 €O
DAY [] s 1 DAY [] - 1 AT [] -

]L aND
19
s

¢

)

L aNo
19
s

—y

e

LT

Logic Chips (cont’d)

* Integration levels

* SSI (small scale integration)
* Introduced in late 1960s
» 1-10 gates (previous examples)

* MSI (medium scale integration)
* Introduced in late 1960s
* 10-100 gates

e LS| (large scale integration)
* Introduced in early 1970s
* 100-10,000 gates
 VLSI (very large scale integration)

* Introduced in late 1970s
* More than 10,000 gates

Logic Functions

e Logical functions can be expressed in several ways:
* Truth table
* Logical expressions
* Graphical form

* Example:
* Majority function
e Output is one whenever majority of inputs is 1
* We use 3-input majority function

Logic Functions (cont’d)

3-input majority function

(o)
(@)
=

* Logical expression form

F=AB+BC+AC
B C

=P

_ B, B, P, O OO O »

R —r O O = » O O
b O - O - O = O
R ~ O - O O O

0y

Logical Equivalence

* All three circuits implement F = A B function

}
F].
B

oy

By

~o
~ D "
o)

pE

(©)

Logical Equivalence (cont’d)

* Proving logical equivalence of two circuits
* Derive the logical expression for the output of each circuit

* Show that these two expressions are equivalent

* Two ways:
* You can use the truth table method

* For every combination of inputs, if both expressions yield the same output, they are
equivalent

* Good for logical expressions with small number of variables
* You can also use algebraic manipulation
* Need Boolean identities

Logical Equivalence (cont’d)

* Derivation of logical expression from a circuit

* Trace from the input to output
* Write down intermediate logical expressions along the path

A —®o ® Dﬁs
D&+B)(A+§)
A +
A

vy
®

(A +B) (A +B) (A + B)

B
+ B

mnl

Logical Equivalence (cont’d)

* Proving logical equivalence: Truth table method

Thanks for your
attention

LECTURE 5

«CPC»: SIS, Practice class and Lab class
assighments explanation

#5 Combinational and Sequential Circuit.
Adders. Subtractors. Comparators.

Lecture 5
Dana Utebayeva

Outline

e «CPC» SIS assignments
explanation
* Practice class
* Lab class
* SIS assignments explanation

* Boolean

|dentities/Postulates/laws
* Expressing logic functions

* Building block diagrams
* Simplification Using
Boolean Identities

e Minterm

e Maxterm

Boolean Identities / Postulates / laws
Boolean Laws

Here is a list of Boolean identities that are useful in simplifying Boolean expressions:

1. a)A+0=4 b)Ad-1=4
2. a)A+1=1 b)A-0=0
3. a)A+A=A b)A-A=A4
4. a)A+A=1 b)A-4=0
5. a)(4)=4
6. Commutative Law:
a)A+B=B+ A b)A-B=B-A4
7. Associative Law:
aA)A+(B+O)=(A4+B)+C b)A-(B-C)=(A4-B):-C
8. Distributive Law:
aA)A - (B+C)=A-B+4-C b)A+B-C=(A4+B)-(A+ 0

0. DeMorgan’s Theorem:
a)A+B=A-B b)A-B=A+B

Problem 2

ABCD

L= a
)] >
):TC |

(a) Implementation of f = ABCD + ABCD + BC

) BC

(wla]- "N
L]

B
C=

D

(a) Implementation of f= ABCD +
ABCD + BC(b) implementation of
the simplified function f=BC +
Dimplementation of Boolean
function using logic gates

7

(b) implementation of the simplified function f = BC + D

Implementation of Boolean function using logic gates

f=ABCD + ABCD + BC

Simplification Using Boolean Identities

f=ABCD + ABCD + BC

f= ABCD + ABCD + BC

Complement of a Boolean Function

(A+B+C) = A+B+C)
(A+B+C) =(A+X) letB+C =X
=A'X' by theorem 5(a) (DeMorgan)
=A’-(B 4+ C) substitute B + C = X
=A'-(B'C') by theorem 5(a) (DeMorgan)

=A'B'C’ by theorem 4(b) (associative)

Complement of a Boolean Function

f=C(AB + A BD + ABD)

Boolean Algebra and Digital Logic Gates

f=C(4B+ABD+4BD)

= ey f= C'(AB + A'B'D + A'BD')
=C+(4B+4BD+4BD)

= C+(AB-Z D-ZBE)
f= C(AB + ABD + ABD)
=C+(A+B)(A+B+D)A+B+D)
By taking the dual and complementing each literal, we have:
The dual of f: C+(A+B)(A+B+D)A+B+D)
Complementing each literal: C+(A+B(A+B+D)(A+B+D)=f

Combinational and Sequential
circuits

Full Adder

-2 § (Sum)

> Full
}: Adder
Truth Table of a Full Adder
Inputs Outputs Decimal
Value
X y z E S
0 0 0 0 0 0
0 0] 0 1 1
0 1 0 0] 1
0 |] 1 0 2
1 0 0 0 1 1
] 0] 1 0 2
]] 0 1 0 2
1 I] 1 1 3

> ((Output Carry)

Logic Diagram of Full Adder

=X
y . & S=x@y®dz
@i

\./

Two-bit Comparator

a,— 3| Two-bit
by — Comparator £ >l =
- T 4 L > A<B

B

Aial‘—"] G > A>B

Truth Table for the 2-Bit Comparator

o g e g g e et ey

Full Subtractor

3P 20P
A
Mi d bit b————
e Full D(Difference Output)
B8 Subtractor
Subtrahend bit
B P1(Borrow Output)
Borrow from

previous stage

Logic Chips (cont’d)

* Integration levels

* SSI (small scale integration)
* Introduced in late 1960s
» 1-10 gates (previous examples)

* MSI (medium scale integration)
* Introduced in late 1960s
* 10-100 gates

e LS| (large scale integration)
* Introduced in early 1970s
* 100-10,000 gates
 VLSI (very large scale integration)

* Introduced in late 1970s
* More than 10,000 gates

LECTURE 6

Multiplexer design
Procedure and applications

Lecture 6

Utebayeva dana

e Y

Ya

.,
"~ .

-

N o

NPV

Truth table for MUX
Truth table for 4-to-1 MUX

LECTURE 7/

Demultiplexers and their
Applications

Lecture 7, By dana Utebayeva

DEMUX DEMULTIPLEXER

MUX and DEMUX
714L.S137 Datasheet applications

|

Sheet

A 3 Line to 8 Line Demultiplexer

W ORTUTS oY

APPLICATION OF A DEMUX

PINOV Single Source Selector Multiple Destinations

STORE . B/W Laser
v Printer

,\ Fax
3 4 Machine
~—¥
¥ Color Inkjet
l. Printer

MUX and DEMUX applications

Aa Lak &

LECTURE 8 K-MAP K MAP
KMAP

Introduction to Karnaugh
map (k-map)

CPC (SIS) by Dana Utebayeva

;
}
t
)

.

PUPSUSE RS

——

e B W 5

abasirnrt At

ch A,
e

\. e N

B
Nmm
A

ot
k\v“'wv—'#‘ -~

S
h
'
\ H\-“-uaw-""“

LECTURE 9

Sequential Circuit.
Sequential logic
design. Flip-Flop.
Counters
Lecture 9

By Dana Utebayeva

Sequential Circuit. Sequential logic design. Flip-Flop. Counters

LATCHES FLIP-FLOPS WHAT IS THE CLOCK?

In Sequential Circuit, the Present Output depends on the Present Input as well as Past output / outputs

Cascaded NOT logic gate

The basic storage element is called latch

LECTURE 11-12

Lecture 10-11

MICROCOMPUTER ARCHITECTURE
Memory
ADC and DAC

Outline

* ADC and DAC

1.1 Basic Blocks of a Microcomputer

* 1.2 Typical Microcomputer Architecture

* 1.3 Single-Chip Microprocessor

* 1.4 Program Execution by Conventional Microprocessors
* 1.5 Program Execution by typical 32-bit Microprocessors

* 1.6 Scalar and Superscalar Microprocessors
*1.7 RISC vs. CISC

153

ADC

What is Analog to l . /\/
Digital Converter? -
. = M_.{-.i] [il [
> 3 -
[- _IL
I > i = — </\/
P 28 Electrical 4 U

154

ADC and DAC

Work use of ADC and DAC

Sound Waves Electrical Voltage Binary Data Electrical Voltage Sound Waves
Sound Waves Electrical Voltage Binary Data Electrical Voltage Sound Waves

G

Digital Processing

- Effects

- Filters

- Conversion
- etc...

Micriihone Cpmpticr £ 101100 ¥

£010110 §
£111110 §

Speaker

ADC DAC
Analogue Digital Analogue

155

Need Conversation

01001101

T

156

ADC in Multisim

CLAENOVPK D100 %
- 150Hz

157

DAC

s1
R1 R5
U o—o—1 A
10kQ 1.00kQ
52
) S
R2
o—o0—2 AAA, u1
5kQ
s3
$—o0
R3
—0—oi—3 AMN
2.5kQ
54 0
jEZE=Esmm
R4
5 0—0 A ANV
2s nm 1.25kQ
SV _—

DAC scheme DAC circuit

158

2.1 Basic Blocks of a Microcomputer

[A microcomputer has three basic blocks: a central processing unit
(CPU), a)

and an input/output (I/O) unit.

[The CPU(microprocessor) executes all the instructions and performs
arithmetic and logic operations on data.

[A memory unit stores both data and instructions. The memory
section typically

contains ROM and RAM chips.
[0 A system bus (comprised of several wires) connects these blocks.

159

2.1 Basic Blocks of a Microcomputer

System Bus

Micto
Pracassor

Microprocessor Memory Element /O unit

FIGURE 2.1 Basic blocks of a microcomputer.

System bus

160

2.1 Basic Blocks of a Microcomputer

*In a single-chip microcomputer, these three elements are on one chip,
whereas

*in a single-chip microprocessor, separate chips are required for
memory and |/O.

161

2.2 Typical Microcomputer Architecture

Microprocessor

FIGURE 2.2

Simplified version of typical microprocessor

RAM

ROM

I

-@ Address Bus

® Data Bus

Conlrol
Bus

/O

Simplified version of a typical microcomputer.

162

2.2.1 System Bus

[The microcomputer’s system bus contains three buses, address,
data, and control bus

[0 When a memory or an I/O chip receives data from the
microprocessor, it is called a WRITE operation, and data is written
into a selected memory location or an |/O port (register).

[0 When a memory or an I/O chip sends data to the microprocessor, it
is called a READ operation, and data is read from a selected memory
location or an 1/0 port.

163

2.2.1 System Bus

[The Address Bus

1. Unidirectional bus: Information transfer takes place in only one
direction, from the microprocessor to the memory or I/O elements.

2. Typically 20 to 32 bits long.
3. The size of the address bus determines the
total number of memory addresses available

For example : microprocessor with 32 address pins can

generate 2% = 4,294,964,296 bytes

164

2.2.1 System Bus

[] The data bus,

1. bidirectional bus: data can flow in both directions, that is, to or
from the microprocessor.

2. The size of the data bus varies from one microprocessor to
another.

165

2.2.1 System Bus

0 The control bus

1. consists of a number of signals that are used to synchronize
operation of the individual microcomputer elements.

Is it Unidirectional or bidirectional bus ??

166

2.2.2 Clock Signals

0 The system clock signals are contained in the control bus.

One Clock
Cycle

FIGURE 2.3 Typical clock signal.

0 The number of cycles per second (hertz, abbreviated Hz) is referred to as the clock frequency.
* clock cycle = 1/f where f is the clock frequency.

* clock frequency determines the speed of the microcomputer.

167

2.3 Single-Chip Microprocessor

* The microprocessor is the CPU of the microcomputer

* The logic inside the microprocessor chip can be divided into three
main areas: the

register section, the control unit, and the arithmetic-logic unit (ALU).

Registers
ALU
Control Unit

—_

FIGURE 24 Microprocessor chip with the main functional elements.

168

2.3.1 Register Section

* The number, size, and types of registers vary from one
microprocessor to another.

* Basic Microprocessor Registers There are four basic microprocessor
registers: instruction reqister, program counter, memory address
reqgister, and accumulator.

169

2.3.1 Register Section

* Instruction reqister (IR) :

(1 The instruction register stores instructions.

1 The word size of the microprocessor determines the size of the
instruction register. For example, a 32-bit microprocessor has a 32-bit
Instruction register.

170

2.3.1 Register Section

* Program Counter (PC):

(1 The program counter contains the address of the instruction or
operation code (op-code).

1 The program counter normally contains the address of the next
instruction to be executed.

1 The size of the program counter is determined by the size of the
address bus.

171

2.3.1 Register Section

How Program Counter is Work ?

1. Upon activating the microprocessor’s RESET input, the address of the first instruction to be
executed is loaded into the program counter.

2. To execute an instruction, the microprocessor typically places the contents of the program
counter on the address bus and reads (“fetches”) the contents of this address(i.e., instruction)
from memory

3. The program counter contents are incremented automatically by the microprocessor’s internal
logic. Microprocessor executes a program sequentially, unless the program contains an
instruction such as a JUMP instruction, which changes the sequence.

172

2.3.1 Register Section

 Memory Address Reqister (MAR).

The memory address register contains the address of data. The
microprocessor uses the address, which is stored in the memory
address register, as a direct pointer to memory. The contents of the
address is the actual data that is being transferred.

173

2.3.1 Register Section

*General Purpose Register (GPR). For an 8-bit microprocessor, the
general-purpose register is called the accumulator.

* It stores the result after most ALU operations.

* These 8-bit microprocessors have instructions to shift or rotate the
accumulator one bit to the right or left through the carry flag.

*In16- and 32-bit microprocessors the accumulator is replaced by a
GPR.

*any GPR can be used as an accumulator.

174

2.3.1 Register Section

*General Purpose Register (GPR).

The term general-purpose comes from the fact that these registers
can hold data, memory

addresses, or the results of arithmetic or logic operations.

* Most registers are general-purpose, but some, such as the program
counter (PC),are provided for dedicated functions.

175

2.3.1 Register Section

* Other Microprocessor Registers such as general-purpose registers,
index register, status register and stack pointer register.

* general-purpose registers speeds up the execution of a program because the microprocessor does not have
to read data from external memory via the data bus if data is stored in one of its general-purpose registers.

* Index Register is typically used as a counter in address modification for an instruction or for general
storage functions. Used to access tables or arrays of data.

e Status Register(a processor status word register or condition code register, contains individual bits, with
each bit having special significance. The bits in the status register are called flags.

176

2.3.1 Register Section
* Flags Type

+* A carry flag is used to reflect whether or not the result
generated by an arithmetic operation is greater than
the microprocessor’s word size.

high byte low byte
00110101 [1T010001
- 00011000 l0O1TO0T1001
Auxiliary carry flag —
0100TT10N 01111010
high-order bit -~ carry s reflected

position into the high-byte
addition

177

2.3.1 Register Section

*Flags Type

A zero flag is used to show whether the result of an operation is zero.
It is set tol if the result is zero, and it is reset to O if the result is
nonzero.

< A parity flag is set to 1 to indicate whether the result of the last
operation contains either an even number of 1’s (even parity) or an
odd number of 1’s (odd parity), depending on the microprocessor.

178

2.3.1 Register Section

*Flags Type

A sign flag (sometimes called a negative flag) is used to indicate
whether the result of the last operation is positive(set to 0) or
negative(set to 1)

< Overflow flag arises from representation of the sign flag by the most
significant bit of a word in signed binary operation. The overflow flag
is set tol if the result of an arithmetic operation is too big for the
microprocessor’s maximum word size, otherwise it is reset to O

179

2.3.1 Register Section

* EXAMPLE :

* Find the sign,carry,zero,overflow,and parity even flag for the following
arithmetic sigh number:

(11110000)+(10100001) =10010001

SF=1 ,CF=1 ,ZF=0 ,0F=0 ,PF=0

180

2.3.1 Register Section

* Stack Pointer Register A stack consists of a number of RAM locations
set aside for reading data from or writing data into these locations
and is typically used by subroutines

* Two instructions, PUSH and POP, are usually available with a stack.
The PUSH operation

is defined as writing to the top or bottom of the stack, whereas the
POP operation means reading from the top or bottom of the stack.

181

2.3.1 Register Section

i : Stack
16-bit Register 0120

sp | 20C8 143

0703

\\\“-.___.» F601
0708

20C2
20C4
20C6
20C8
20CA
20CC
20CE

After Push

16-bit Regester 0120

SP 20CA

Stack

143E

Bottom of
Stack

0703

F601

0708

0120

20C6

20CA
20CC
20CE

FIGURE 2.5

Push operation when accessing a stack from the bottom

PUSH operation when accessing a stack from the bottom.

182

2.3.1 Register Section

16-bit Register
SP

Before POP

0360

20CA

N

Stack

143E

0705

F208

0107

A286

20C2
20C4
20C6
20C8
20CA
20CC

After POP

16-bit Regster A288
SP 20C8

Bottom of
Stack

Stack

143E

0705

F208

0107

A286

20C2
20C4
20Cs
20C8
20CA
20CC

FIGURE 2.6

POP operation when accessing a stack from the bottom.

183

2.3.1 Register Section

16-bit Register |

SP

20C8

\w A009

Before PUSH
[0567 Stack

0501

153E

0705

20C2
20C4
20C6
20C8
20CA
20CC
20CE

After PUSH
16-bit Register 0567 Stack
SP 20C8
k_' 0567
AQCD
0501
153E
0705
Top of
Stack

20C2
20C4
20C6
20C8
20CA
20CC
20CE

FIGURE 2.7

PUSH operation when accessing a stack from the top.

184

2.3.1 Register Section

Before POP Afier POP
16-bit Register | 0700 Stack
chx SP 2008
16-bit Register | 0326 e
SP [2008 20C2 20C4
N 20C4 0700 | 20Cé
TP 0700 2006 1A52 | 20C8
M8 | 2008 052C | 20CA
05C | 20CA 0180 | 20CC
0190 | 20¢C
Top of
Stack

FIGURE28 POP operation when accessing a stack from the top.

185

2.3.2 Control Unit

* The main purpose of the control unit is to read and decode
instructions from the program memory.

* To execute an instruction, the control unit steps through the
appropriate blocks of the ALU based on the op-codes contained in the
Instruction register.

186

2.3.2 Control Unit

Control Signal Actions

* RESET. This input is common to all microprocessors. When this input
pin is driven HIGH or LOW (depending on the microprocessor), the
program counter is loaded with a predefined address specified by the
manufacturer.

187

2.3.2 Control Unit

Control Signal Actions

e READ/WRITE (R/W) This output line is common to all
microprocessors. The status of this line tells the other
microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal
on this line indicates a READ operation, and a LOW
indicates a WRITE operation.

188

2.3.2 Control Unit

Control Signal Actions

* READY, This is an input to a microprocessor. Slow devices (memory
and 1/0) use this signal to gain extra time to transfer data to or
receive data from a microprocessor. The READY signal is usually an
active low signal; that is, LOW indicates that the microprocessor is
ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor
responds by suspending all its internal operations and enters a WAIT
state. When the device is ready to send or receive data, it removes
the READY signal. The microprocessor comes out of the WAIT state
and performs the appropriate operation.

189

2.3.2 Control Unit

Control Signal Actions

* Interrupt Request (INT or IRQ). The external I/O devices can
interrupt the microprocessor via this input pin on the microprocessor
chip. When this signal is activated by the external devices, the
microprocessor jumps to a special program called the interrupt service
routine. This program is normally written by the user for performing
tasks that the interrupting device wants the microprocessor to carry
out. After completing this program, the microprocessor returns to the
main program it was executing when the interrupt occurred.

190

2.3.3 Arithmetic-Logic Unit

* The ALU performs all the data manipulations, such as arithmetic and
logic operations, inside a microprocessor. The size of the ALU
conforms to the word length of the microcomputer.

* ALU Functions:
1.Binary addition and logic operations

2. Finding the one’s complement of data

3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or
right through a carry

191

2.3.4 Functional Representations of
Simple and Typical Microprocessors

¢ Simple MiCFO! Arithmetic and Logic unit (ALU)

General Purpose

<4—» Status Register < — P 4——Pp Register
Memory Address

> Rggisher
—> Shifter - ¢ " Prograrm Counter

Instruction

<——»{ Register

3
- —fer Complementer Iﬂ - g T
a
—] Control Unit
¢ > Boolean Logic
and Addition ¢ *

K Buffer Register < >

(a) Simple microprocessor

192

2.3.4 Functional Representations of
Simple and Typical Microprocessors

e Buffer Register : Stores any data read from memory for further
processing by the ALU.

193

2.3.4 Functional Representations of
Simple and Typical Microprocessors

* Typical Microprocessor

194

Pentium ™ Microprocessor
Branch ine |
Target [orefete] Code Cache
Bufter ress 8 KBytes
Instruction Prefetch Buffers Control
o Instruction Decode e ROM
84-Bit Branch Vertt. T ™
%-: & Target Addr l v v ¥
4 B Control Unit
4 A l
328t TS
Address | Bus je—» Page <« Floating
Q__...‘..:_’ Unit <> Unit m m [Point
—p{ (U Pipeline) (V Pipeiine) |.q— Unit
< >
Control =] Control
' ' <“»|| Integer Register Flie -+ Reglster Flie
ALU LU
(U Pipeline) (VM > Add
- l!-ml Shifter
. @ Divide g
64-Bit 32-Bit 4 >
Data Addr. R 4 v iy Muttipty
Bus Bus 39’1 __-# =0
Data Cache
32
‘ 8 KByles A
PDB24

(b) Pentium Microprocessor 195

* The Pentium contains two instruction pipelines: the U-pipe and the
V-pipe. The U-pipe can execute all integer and floating-point
instructions. The V-pipe can execute simple integer instructions

* The Pentium contains two separate cache memories: code cache and
data cache.

196

2.3.5 Simplified Explanation of Control
Unit design

* The control unit performs two basic operations:
1. instruction interpretation
2. and instruction sequencing.

197

2.3.5 Simplified Explanation of Control
Unit design

* There are two methods for designing a control unit:

hardwired control Microprogrammed control(firmware)

Oclocked sequential circuit. [JROM inside the control unit (control
memory)
[Omore expensive
Oflexibility

198

2.3.5 Simplified Explanation of Control
Unit design

* How incrementing the contents of the register by 1 is done in
microprogramming

control ?7?
(see figures in next slides)

199

2.3.5 Simplified Explanation of Control

Unit design

Arithmetic-Logic Unit (ALU)

< > Complementer

Boolean Logic
‘> and Addition

#
k

r'—" Status flags < Ly

01101010

e m——
—"’

y Register
v 01101010
Memory Address
i ———P Register

: ; Program Counter

P

Instruction
Register

Buffer Register ‘

Data Bus

’
J
I
4
/!
5
s
4
0
+
-
C -~

Control Unit

FIGURE 2.10 Transferring register contents to a data bus.

Transferring register
contents to a data bus

200

2.3.5 Simplified Explanation of Control

Unit design

AnhimeNcLogic unk (M)
Register
01101010
> Status Flags ‘—‘—ﬂ
i Memory Address
o m— Register
| | Program Counter
b L— Instructi
Shiftes €—» Register
<o
P> Complementer o =
o
o
Control Unit
Boolean Logic
> and Addtion
01101010
.................. I A R
o EEEE—
Buffer Register
Data Bus
FIGURE 2.11 Transferring data bus contents to an ALU.

201

2.3.5 Simplified Explanation of Control

Unit design

Buffer Register
Data Bus

Arithmetic-Logic unit (ALU})
Register
01101010
‘_J Status flags < : |
: Memory Address
P Register
¢ N Program Counter
—> Shifter > Instruction
4P Register
H '
o
=
‘> Complementer : > =
i Control Unit
Boolean Logic P
<+ and Addition
01101011 ‘
x A
""""""""""""""" l R == ®

FIGURE 2.12

Activating the ALU logic.

202

2.3.5 Simplified Explanation of Control

Unit design

Arithmetic-Logic unit {ALU)

P

Status Flags ‘———-T

Shifter "—7

Complementer k——‘

Boolean Logic .
and Addition
01101011 {

’ -

l

01101011

Register

01101010

Memory Address
Register

Program Counter

Instruction
Register

Controi Unit

Buffer Register

Data Bus

FIGURE 2.13

Transferring an ALU result to a data bus.

203

2.3.5 Simplified Explanation of Control
Unit desien

Arithmetic-Logic unit {ALU)
... 2
, Register
—b 01101011
Status Flags < ; »
; Memory Address
> Register
¢ > Program Counter
<> ¢ P Instruction
Shifise D EE— Register
i S ®
Complementer —» =
b
Control Unit
Boolean Logic >
> and Addition
01101011
Buffer Register
Data Bus

204
FIGURE 2.14 Transferring a data bus.

2.4 Program Execution by Conventional
Microprocessors

* The following three steps for completing the instruction:

1.Fetch. The microprocessor fetches (instruction read) the instruction from the main memory
(external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit. The
control unit inputs the contents of the instruction register, and then decodes (translates) the
instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To accomplish the
task, the control unit generates a number of enable signals required by the instruction.

205

2.4 Program Execution by Conventional
Microprocessors

* For example, suppose that it is desired to add the contents of two registers, X and
Y, and store the result in register Z. To accomplish this, a conventional
microprocessor performs the following steps:

1. The microprocessor fetches the instruction into the instruction register.
2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU sections to perform the
following:

a. The CU transfers the contents of registers X and Y from the Register section into the ALU.
b. The CU commands the ALU to ADD.

c. The CU transfers the result from the ALU into register Z of the register section.

206

2.5 Program Execution by typical 32-bit
Microprocessors

* Enhancement in 32-bit microprocessors (like Pentium) include : cache
memory, memory

management, pipelining, floating-point arithmetic, and branch
prediction.

* Cache memory is a high-speed read/write memory implemented as
on-chip

hardware in typical 32-bit microprocessors in order to increase
processing rates. This topic

is covered in more detail in Chapter 3.

207

2.5 Program Execution by typical 32-bit
Microprocessors

* Memory management allows programmers to write programs much
larger than those that could fit in the main memory space available to
the microprocessors; the programs are simply stored on a secondary
device, such as a hard disk. This topic is covered in more detail in

Chapter 3.

208

2.5.1 Pipelining

* Basic Concept

Latch

ch
Latch
Latch

Segment 1 Segment 2 3 Segment 3 Segment 4

input —» Hi H2 H3 Ha4

Clock

FIGURE 2.15 Four-segment pipeline.

Hi is Hardware designed to perform activity Ai

209

2.5.1 Pipelining

FIGURE 2.16

Segment 4
Segment 3
Segment 2
Segment 1

Overlapped execution of four tasks using a pipeline.

T

T
T2

T
T2
13

T
T2
13
T4

T2
T3
T4

1

2

3

4

5

6

7

Time

210

2.5.1 Pipelining
* Two Kind of Pipelining:
Arithmetic operations and instruction execution.

211

2.5.1 Pipelining

* Arithmetic Pipelines

* Consider the process of adding two floating-point numbers x =0.9234
*10%and y = 0.48 * 10°.

First: exponents of x and y are unequal.

Second: exponent alignment.

Third: Perform the addition

Fourth: Normalize the final answer

212

segment

* Pipelined floating-point
add/subtract unit

FIGURE 2.17

Segment 1

Segment 2

Segment 3

Segment 4

Pipelined floating-point add/subtract unit.

Input

P S

bl

Latch

v

Exponent comparison unit

v

Latch

v

Exponent alignment unit

v

Latch

v

Significand add/subtract
unit

v

Latch

Y

Post normalization unit

y

Latch

'

213

2.5.1 Pipelining

* Instruction Pipelines

Instruction cycle typically involves the

following activities:

* 1. Instruction fetch -[Ineeds five clocks to complete
* 2. Instruction decode

* 3. Operand fetch (Data Read)

*4. Operation execution

5. Result routing.

214

Five-segment
instruction pipeline

FIGURE 2.18

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Five-segment instruction pipeline.

|

Latch

¥

Instruction fetch
unit

¥

Latch

v

Instruction decode
unit

.

ey

Latch

v

Operand fetch unit

v

Latch

E

+

Operation execution
unit

v

—

Latch

v

Result routing unit

T

Latch

:

215

2.5.1 Pipelining

* Example of the execution of a stream of five instructions: 11,12,13,14,

and 15, in which 13 is a conditional branch instruction.

S5 1] 1213 4 (15
S4 Hli12]13 14 | 15
S3 i 2| 13 14 | IS
S2 M1 1213 4 | 15
Stln11j12] 13 14 | I5
AN
Extra clocks
FIGURE 2.19 Pipelined execution of a stream of five instructions that includes

a branch instruction.

216

2.5.2 Branch Prediction Feature

* This allows these microprocessors to anticipate jumps of the
instruction flow ahead of time.

217

2.5.2 Branch Prediction Feature

* To accomplish this, the Pentium includes on-chip
hardware called the Branch Unit (BU). The BU contains
the branch execution unit (BEU) and the branch
prediction unit (BPU). Whenever the Pentium
encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s
branch condition using the BEU and determines whether
the branch should or should not be taken. Once the BU
determines the branch condition, it calculates the
starting address (Branch target) of the next block of code
to be executed. The Pentium then starts fetching code at
the new address.

218

2.6 Scalar and Superscalar Microprocessors

* Scalar processors such as the 80486 can execute one instruction per
cycle.

The 80486 contains only one pipeline.
* Superscalar microprocessors, can execute

more than one instruction per cycle. These microprocessors contain
more than one pipeline.

* The Pentium, a superscalar microprocessor, contains two
independent pipelines. This

allows the Pentium to execute two instructions per cycle.

219

2.7 RISC vs. CISC

* There are two types of microprocessor architectures:

R

°R
C

SC and CISC.

SC stand for (reduced instruction set computer) and
SC for (complex instruction set computer)

220

2.7 RISC vs. CISC

CISC RISC

large number of instructions
and many addressing modes

slower clock rate

complex control unit,
thus requiring microprogrammed
implementation.

more difficult to pipeline;

complex programs require fewer
instructions in CISC

a simple instruction
set with a few addressing modes

fast clock rate

hardwired control Unit

more efficient pipelining.

RISC requires a large number of
instructions to accomplish the same task

221

2.7 RISC vs. CISC

* Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro
and other succeeding members of the Pentium family and Motorola
68060 use a combination of RISC and CISC architectures for providing
high performance. The Pentium Pro and other succeeding

222

LECTURE 11-12

=Y

Lecture 10-11

MICROCOMPUTER ARCHITECTURE
Memory
ADC and DAC

Outline

* ADC and DAC

1.1 Basic Blocks of a Microcomputer

* 1.2 Typical Microcomputer Architecture

* 1.3 Single-Chip Microprocessor

* 1.4 Program Execution by Conventional Microprocessors
* 1.5 Program Execution by typical 32-bit Microprocessors

* 1.6 Scalar and Superscalar Microprocessors
*1.7 RISC vs. CISC

225

2.3.1 Register Section

*Flags Type

A zero flag is used to show whether the result of an operation is zero.
It is set tol if the result is zero, and it is reset to O if the result is
nonzero.

< A parity flag is set to 1 to indicate whether the result of the last
operation contains either an even number of 1’s (even parity) or an
odd number of 1’s (odd parity), depending on the microprocessor.

226

2.3.1 Register Section

*Flags Type

A sign flag (sometimes called a negative flag) is used to indicate
whether the result of the last operation is positive(set to 0) or
negative(set to 1)

< Overflow flag arises from representation of the sign flag by the most
significant bit of a word in signed binary operation. The overflow flag
is set tol if the result of an arithmetic operation is too big for the
microprocessor’s maximum word size, otherwise it is reset to O

227

2.3.1 Register Section

* EXAMPLE :

* Find the sign,carry,zero,overflow,and parity even flag for the following
arithmetic sigh number:

(11110000)+(10100001) =10010001

SF=1 ,CF=1 ,ZF=0 ,0F=0 ,PF=0

228

2.3.1 Register Section

* Stack Pointer Register A stack consists of a number of RAM locations
set aside for reading data from or writing data into these locations
and is typically used by subroutines

* Two instructions, PUSH and POP, are usually available with a stack.
The PUSH operation

is defined as writing to the top or bottom of the stack, whereas the
POP operation means reading from the top or bottom of the stack.

229

2.3.1 Register Section

20C2
20C4
20C6
20C8
20CA
20CC
20CE

After Push

16-bit Regester 0120

SP 20CA

143E

Bottom of
Stack

0703

F601

0708

0120

20C6

20CA
20CC
20CE

Before Push
o Stack

16-bit Register 0120
sp | 20C8 143
0703
_» F601
0708

FIGURE 2.5

PUSH operation when accessing a stack from the bottom.

230

2.3.1 Register Section

16-bit Register
SP

Before POP

0360

20CA

N

Stack

143E

0705

F208

0107

A286

20C2
20C4
20C6
20C8
20CA
20CC

After POP

16-bit Regster A288
SP 20C8

Bottom of
Stack

Stack

143E

0705

F208

0107

A286

20C2
20C4
20Cs
20C8
20CA
20CC

FIGURE 2.6

POP operation when accessing a stack from the bottom.

231

2.3.1 Register Section

16-bit Register |

SP

20C8

\w A009

Before PUSH
[0567 Stack

0501

153E

0705

20C2
20C4
20C6
20C8
20CA
20CC
20CE

After PUSH
16-bit Register 0567 Stack
SP 20C8
k_' 0567
AQCD
0501
153E
0705
Top of
Stack

20C2
20C4
20C6
20C8
20CA
20CC
20CE

FIGURE 2.7

PUSH operation when accessing a stack from the top.

232

2.3.1 Register Section

Before POP Afier POP
16-bit Register | 0700 Stack
chx SP 2008
16-bit Register | 0326 e
SP [2008 20C2 20C4
N 20C4 0700 | 20Cé
TP 0700 2006 1A52 | 20C8
M8 | 2008 052C | 20CA
05C | 20CA 0180 | 20CC
0190 | 20¢C
Top of
Stack

FIGURE28 POP operation when accessing a stack from the top.

233

2.3.2 Control Unit

* The main purpose of the control unit is to read and decode
instructions from the program memory.

* To execute an instruction, the control unit steps through the
appropriate blocks of the ALU based on the op-codes contained in the
Instruction register.

234

2.3.2 Control Unit

Control Signal Actions

* RESET. This input is common to all microprocessors. When this input
pin is driven HIGH or LOW (depending on the microprocessor), the
program counter is loaded with a predefined address specified by the
manufacturer.

235

2.3.2 Control Unit

Control Signal Actions

e READ/WRITE (R/W) This output line is common to all
microprocessors. The status of this line tells the other
microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal
on this line indicates a READ operation, and a LOW
indicates a WRITE operation.

236

2.3.2 Control Unit

Control Signal Actions

* READY, This is an input to a microprocessor. Slow devices (memory
and 1/0) use this signal to gain extra time to transfer data to or
receive data from a microprocessor. The READY signal is usually an
active low signal; that is, LOW indicates that the microprocessor is
ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor
responds by suspending all its internal operations and enters a WAIT
state. When the device is ready to send or receive data, it removes
the READY signal. The microprocessor comes out of the WAIT state
and performs the appropriate operation.

237

2.3.2 Control Unit

Control Signal Actions

* Interrupt Request (INT or IRQ). The external I/O devices can
interrupt the microprocessor via this input pin on the microprocessor
chip. When this signal is activated by the external devices, the
microprocessor jumps to a special program called the interrupt service
routine. This program is normally written by the user for performing
tasks that the interrupting device wants the microprocessor to carry
out. After completing this program, the microprocessor returns to the
main program it was executing when the interrupt occurred.

238

2.3.3 Arithmetic-Logic Unit

* The ALU performs all the data manipulations, such as arithmetic and
logic operations, inside a microprocessor. The size of the ALU
conforms to the word length of the microcomputer.

* ALU Functions:
1.Binary addition and logic operations

2. Finding the one’s complement of data

3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or
right through a carry

239

2.3.4 Functional Representations of
Simple and Typical Microprocessors

¢ Simple MiCFO! Arithmetic and Logic unit (ALU)

General Purpose

<4—» Status Register < — P 4——Pp Register
Memory Address

> Rggisher
—> Shifter - ¢ " Prograrm Counter

Instruction

<——»{ Register

3
- —fer Complementer Iﬂ - g T
a
—] Control Unit
¢ > Boolean Logic
and Addition ¢ *

K Buffer Register < >

(a) Simple microprocessor

240

2.3.4 Functional Representations of
Simple and Typical Microprocessors

e Buffer Register : Stores any data read from memory for further
processing by the ALU.

241

2.3.4 Functional Representations of
Simple and Typical Microprocessors

* Typical Microprocessor

242

Pentium ™ Microprocessor
Branch ine |
Target [orefete] Code Cache
Bufter ress 8 KBytes
Instruction Prefetch Buffers Control
o Instruction Decode e ROM
84-Bit Branch Vertt. T ™
%-: & Target Addr l v v ¥
4 B Control Unit
4 A l
328t TS
Address | Bus je—» Page <« Floating
Q__...‘..:_’ Unit <> Unit m m [Point
—p{ (U Pipeline) (V Pipeiine) |.q— Unit
< >
Control =] Control
' ' <“»|| Integer Register Flie -+ Reglster Flie
ALU LU
(U Pipeline) (VM > Add
- l!-ml Shifter
. @ Divide g
64-Bit 32-Bit 4 >
Data Addr. R 4 v iy Muttipty
Bus Bus 39’1 __-# =0
Data Cache
32
‘ 8 KByles A
PDB24

(b) Pentium Microprocessor 243

* The Pentium contains two instruction pipelines: the U-pipe and the
V-pipe. The U-pipe can execute all integer and floating-point
instructions. The V-pipe can execute simple integer instructions

* The Pentium contains two separate cache memories: code cache and
data cache.

244

2.3.5 Simplified Explanation of Control
Unit design

* The control unit performs two basic operations:
1. instruction interpretation
2. and instruction sequencing.

245

2.3.5 Simplified Explanation of Control
Unit design

* There are two methods for designing a control unit:

hardwired control Microprogrammed control(firmware)

Oclocked sequential circuit. [JROM inside the control unit (control
memory)
[Omore expensive
Oflexibility

246

2.3.5 Simplified Explanation of Control
Unit design

* How incrementing the contents of the register by 1 is done in
microprogramming

control ?7?
(see figures in next slides)

247

2.3.5 Simplified Explanation of Control

Unit design

Arithmetic-Logic Unit (ALU)

r

r_’, Status flags

< g Shifter

< g Complementer

Boolean Logic
<> and Addition

Buffer Register

01101010

e T
e

-’
-

Register
v 01101010
Memory Address
< ——P Register
‘ ; Program Counter
Instruction
P Register

Data Bus

§
I
J
I
¢
S/
'
4
o
)
#
L
@‘

Control Unit

FIGURE 2.10

Transferring register contents to a data bus.

248

2.3.5 Simplified Explanation of Control

Unit design

AnhimeNcLogic unk (M)
Register
01101010
> Status Flags ‘—‘—ﬂ
i Memory Address
o m— Register
| | Program Counter
b L— Instructi
Shiftes €—» Register
<o
P> Complementer o =
o
o
Control Unit
Boolean Logic
> and Addtion
01101010
.................. I A R
o EEEE—
Buffer Register
Data Bus
FIGURE 2.11 Transferring data bus contents to an ALU.

249

2.3.5 Simplified Explanation of Control

Unit design

Buffer Register
Data Bus

Arithmetic-Logic unit (ALU})
Register
01101010
‘_J Status flags < : |
: Memory Address
P Register
¢ N Program Counter
—> Shifter > Instruction
4P Register
H '
o
=
‘> Complementer : > =
i Control Unit
Boolean Logic P
<+ and Addition
01101011 ‘
x A
""""""""""""""" l R == ®

FIGURE 2.12

Activating the ALU logic.

250

2.3.5 Simplified Explanation of Control

Unit design

Arithmetic-Logic unit {ALU)

P

Status Flags ‘———-T

Shifter "—7

Complementer k——‘

Boolean Logic .
and Addition
01101011 {

’ -

l

01101011

Register

01101010

Memory Address
Register

Program Counter

Instruction
Register

Controi Unit

Buffer Register

Data Bus

FIGURE 2.13

Transferring an ALU result to a data bus.

251

2.3.5 Simplified Explanation of Control
Unit desien

Arithmetic-Logic unit {ALU)
... 2
, Register
—b 01101011
Status Flags < ; »
; Memory Address
> Register
¢ > Program Counter
<> ¢ P Instruction
Shifise D EE— Register
i S ®
Complementer —» =
b
Control Unit
Boolean Logic >
> and Addition
01101011
Buffer Register
Data Bus

252
FIGURE 2.14 Transferring a data bus.

2.4 Program Execution by Conventional
Microprocessors

* The following three steps for completing the instruction:

1.Fetch. The microprocessor fetches (instruction read) the instruction from the main memory
(external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit. The
control unit inputs the contents of the instruction register, and then decodes (translates) the
instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To accomplish the
task, the control unit generates a number of enable signals required by the instruction.

253

2.4 Program Execution by Conventional
Microprocessors

* For example, suppose that it is desired to add the contents of two registers, X and
Y, and store the result in register Z. To accomplish this, a conventional
microprocessor performs the following steps:

1. The microprocessor fetches the instruction into the instruction register.
2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU sections to perform the
following:

a. The CU transfers the contents of registers X and Y from the Register section into the ALU.
b. The CU commands the ALU to ADD.

c. The CU transfers the result from the ALU into register Z of the register section.

254

2.5 Program Execution by typical 32-bit
Microprocessors

* Enhancement in 32-bit microprocessors (like Pentium) include : cache
memory, memory

management, pipelining, floating-point arithmetic, and branch
prediction.

* Cache memory is a high-speed read/write memory implemented as
on-chip

hardware in typical 32-bit microprocessors in order to increase
processing rates. This topic

is covered in more detail in Chapter 3.

255

2.5 Program Execution by typical 32-bit
Microprocessors

* Memory management allows programmers to write programs much
larger than those that could fit in the main memory space available to
the microprocessors; the programs are simply stored on a secondary
device, such as a hard disk. This topic is covered in more detail in

Chapter 3.

256

2.5.1 Pipelining

* Basic Concept

Latch

ch
Latch
Latch

Segment 1 Segment 2 3 Segment 3 Segment 4

input —» Hi H2 H3 Ha4

Clock

FIGURE 2.15 Four-segment pipeline.

Hi is Hardware designed to perform activity Ai

257

2.5.1 Pipelining

FIGURE 2.16

Segment 4
Segment 3
Segment 2
Segment 1

Overlapped execution of four tasks using a pipeline.

T

T
T2

T
T2
13

T
T2
13
T4

T2
T3
T4

1

2

3

4

5

6

7

Time

258

2.5.1 Pipelining
* Two Kind of Pipelining:
Arithmetic operations and instruction execution.

259

2.5.1 Pipelining

* Arithmetic Pipelines

* Consider the process of adding two floating-point numbers x =0.9234
*10%and y = 0.48 * 10°.

First: exponents of x and y are unequal.

Second: exponent alignment.

Third: Perform the addition

Fourth: Normalize the final answer

260

FIGURE 2.17

Segment 1

Segment 2

Segment 3

Segment 4

Pipelined floating-point add/subtract unit.

Input

Latch

¥

Exponent comparison unit

v

Latch

v

Exponent alignment unit

it

Latch

v

Significand add/subtract
unit

!

Latch

y

Post normalization unit

!

Latch

I

261

2.5.1 Pipelining

* Instruction Pipelines

Instruction cycle typically involves the

following activities:

* 1. Instruction fetch -[Ineeds five clocks to complete
* 2. Instruction decode

* 3. Operand fetch (Data Read)

*4. Operation execution

5. Result routing.

262

|

Latch

N

Instruction fetch
Segment 1 s

v

l Latch

+

Instruction decode
Segment 2 o

v

Latch
v

Segment 3 Operand fetch unit

v
[Latch J
v

Segment 4 Operation execution
unit

v
r Latch |
v

Segment 5 Result routing unit
v
Latch
FIGURE 2.18 Five-segment instruction pipeline.

263

2.5.1 Pipelining

* Example of the execution of a stream of five instructions: 11,12,13,14,

and 15, in which 13 is a conditional branch instruction.

S5 1] 1213 4 (15
S4 Hli12]13 14 | 15
S3 i 2| 13 14 | IS
S2 M1 1213 4 | 15
Stln11j12] 13 14 | I5
AN
Extra clocks
FIGURE 2.19 Pipelined execution of a stream of five instructions that includes

a branch instruction.

264

2.5.2 Branch Prediction Feature

* This allows these microprocessors to anticipate jumps of the
instruction flow ahead of time.

265

2.5.2 Branch Prediction Feature

* To accomplish this, the Pentium includes on-chip
hardware called the Branch Unit (BU). The BU contains
the branch execution unit (BEU) and the branch
prediction unit (BPU). Whenever the Pentium
encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s
branch condition using the BEU and determines whether
the branch should or should not be taken. Once the BU
determines the branch condition, it calculates the
starting address (Branch target) of the next block of code
to be executed. The Pentium then starts fetching code at
the new address.

266

2.6 Scalar and Superscalar Microprocessors

* Scalar processors such as the 80486 can execute one instruction per
cycle.

The 80486 contains only one pipeline.
* Superscalar microprocessors, can execute

more than one instruction per cycle. These microprocessors contain
more than one pipeline.

* The Pentium, a superscalar microprocessor, contains two
independent pipelines. This

allows the Pentium to execute two instructions per cycle.

267

2.7 RISC vs. CISC

* There are two types of microprocessor architectures:

R

°R
C

SC and CISC.

SC stand for (reduced instruction set computer) and
SC for (complex instruction set computer)

268

2.7 RISC vs. CISC

CISC RISC

large number of instructions
and many addressing modes

slower clock rate

complex control unit,
thus requiring microprogrammed
implementation.

more difficult to pipeline;

complex programs require fewer
instructions in CISC

a simple instruction
set with a few addressing modes

fast clock rate

hardwired control Unit

more efficient pipelining.

RISC requires a large number of
instructions to accomplish the same task

269

2.7 RISC vs. CISC

* Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro
and other succeeding members of the Pentium family and Motorola
68060 use a combination of RISC and CISC architectures for providing
high performance. The Pentium Pro and other succeeding

270

LECTURE 12

MICROPROCESSOR
PIN DIAGRAM

-
MEMORY INTERFACING

Flip-Flop or Latch as a Storage Element

Djy=—=D

EN——+{EN -

D ouT

DIN ‘ D
WR

EN EN
RD

EN

& f

EN

F‘?_Dour

EN

EN

RD

WR

S 38 5 1SR T P O

1N

41_ Input Buffer
|] V—l- | [, (o, SN |
- > Register 3
HIK .
g — Register 2
g 0 l; Register |
& 100, Register 0
L__ , (W I [I TR

I

0, 05 05 0, 0, 0, 0, O,

I I I 1 L LIl
WR ——q 4
sniiu 2] al
A, :
4 x4 4 x4
Ao
N
07 06 Os 04 0] O: ()l 0()

A, j'>c
. i SET Eid)
CS RD WR CS RD WR
r_u__b_ M, M;
e —— — S —q
RD WR il T L] R
(e ———————————— Al 010 RZ A|’_"| 1 0 R6
)10 Ry A—0 01| R, A——1 0 1] R
| 1 R 00 R, 100 R,
a—io | T T
1/0 Lines /0 Lines
AI_—‘I 0 q R4
A 011 R .
— O)
1o R, CS RD WR
M,
001 Rl 001 1 R,
0 Ry Ai——0 01 0 R,
A, 000 1 R,
/O Lines 0000 R
=

1/0 —|

* The Requirements of a memory chip

v

v

A memory chip requires address lines to identity a memory
register.

The number of address lines required is determined by the
number of registers in a chip

(27 = number of registers where n is the number of address
lines).

A memory chip requires a Chip Select (CS) signal to enable
the chip. The remaining address lines of the
microprocessor can be connected to the CS signal

through an interfacing logic.

The address lines connected to CS select the chip, and the
address lines connected to the address lines of the memory
chip select the register.

The control signal Read (RD) enables the output buffer,
and data from the selected register are made available on
the output lines.

The control signal (WR) enables the input buffer, and data
on the input lines are written into memory cells.

e The Requirements of a memory chip

A memory chip requires address lines to identity a memory register.

The number of address lines required is determined by thenumber of registers in a
chip(2n = number of registers where n is the number of addresslines).A memory chip
requires a Chip Select (CS) signal to enablethe chip. The remaining address lines of
themicroprocessor can be connected to the CS signalthrough an interfacing logic.The
address lines connected to CS select the chip, and theaddress lines connected to the
address lines of the memorychip select the register.” The control signal Read (RD) enables
the output buffer,and data from the selected register are made available onthe output
lines.® The control signal (WR) enables the input buffer, and dataon the input lines are
written into memory cells.

- INPUT AND OUTPUT (I/O) DEVICES :

* Input/output devices are the means through which the
MPU communicates with "the outside world.

 There are two different methods by which /O devices can
be identified.

1. 1/Os with 8-Bit Addresses (Peripheral-Mapped 1/0)
 The steps in communicating with an I/O device

v The MPU places an 8-bit address on the address bus.
which is decoded by external decode logic.

v The MPU sends a control signal (I/O Read or I/O Write)
and enables the I/O device.

v' Data are transferred using the data bus.
2. 1/Os with 16-Bit Addresses (Memory-Mapped 1/0)

v' the MPU uses 16 address lines to identify an I/O device.
This is known as memory-mapped [/O.

e INPUT AND OUTPUT (I/O) DEVICES :
e Input/output devices are the means through which theMPU communicates with "the outside world.”

e There are two different methods by which 1/0O devices canbe identified.1. I/Os with 8-Bit Addresses
(Peripheral-Mapped 1/0)

e The steps in communicating with an 1/O deviceThe MPU places an 8-bit address on the address bus.which is decoded
by external decode logic.The MPU sends a control signal (I/O Read or I/O Write)and enables the I/O device.Data are
transferred using the data bus.2. I/Os with 16-Bit Addresses (Memory-Mapped I/0)the MPU uses 16 address lines to
identify an 1/O device.This is known as memory-mapped I/0.

- THE 8085 MPU

o The term microprocessing unit (MPU) is similar to the
term central processing unit (CPU) used in traditional
computers.

* MicroProcessing Unit (MPU)

A device or a group of devices (as a unit) that can
communicate with peripherals, provide timing signals,
direct data flow, and perform computing tasks as
specified by the instructions in memory.

« The 8085 microprocessor can almost qualify as an MPU
with the following two limitations.

1. The low-order address bus of the 8085 microprocessor is
multiplexed (time-shared) with the data bus. The buses
need to be demultiplexed.

2. Appropriate control signals need to be generated to
interface memory and /O with the 8085.

e ¢« THE 8085 MPUoThe term microprocessing unit (MPU) is similar to
theterm central processing unit (CPU) used in
traditionalcomputers.MicroProcessing Unit (MPU)A device or a group of
devices (as a unit) that cancommunicate with peripherals, provide timing
signals,direct data flow, and perform computing tasks asspecified by the
instructions in memory.The 8085 microprocessor can almost qualify as an
MPUwith the following two limitations.1. The low-order address bus of the
8085 microprocessor ismultiplexed (time-shared) with the data bus. The
busesneed to be demultiplexed.2. Appropriate control signals need to be
generated tointerface memory and I/O with the 8085.

« THE 8085 AND ITS PIN DESCRIPTION

- The 8085 is an 8-bit general purpose microprocessor
that can address 64K Byte of memory.

* It has 40 pins and uses +5V for power. It can run at a
maximum frequency of 3 MHz.

* The pins on the chip can be grouped into 6 groups:
v Address Bus and Multiplexed Data Bus. (16 Pins)
7/ Control and Status Signals. (6 Pins)
/ Power supply and frequency. (4 Pins)
v Externally Initiated Signals. (7 Pins)
7 Interupt Signals. (S pins)
v’ Serial I/O ports. (2 Pins)

e THE 8085 AND ITS PIN DESCRIPTIONe The 8085 is an 8-bit general
purpose microprocessorthat can address 64K Byte of memory.e It
has 40 pins and uses +5V for power. It can run at amaximum
frequency of 3 MHz.e The pins on the chip can be grouped into 6
groups:Address Bus and Multiplexed Data Bus. (16 Pins)Control and
Status Signals. (6 Pins)Power supply and frequency. (4 Pins
)Externally Initiated Signals. (7 Pins)Interupt Signals. (5 pins)Serial

/0 ports. (2 Pins)

8085 Microprocessor Pin Out Diagram

Microprocessor Pin Oult Diagramnn

Xy
xg

RESE oUT
Serial i/p, o/p signals—[N
SID
TRAP

RST 7.5
RST 6.5
RST 5.5

INTR

8085 A

NERNEENREEARNRRNREN

40
39
38
37

W oW W
o h

w
(=

—» CLK (OUT)

» RESET IN
—» READY

» 10/ M

Pin Diagram of 8085

Serial
170
Ports

Externally
Initiated
Signals

External Signal
Acknowledgment

SN (sND

mls &
1= 12 4(:[-20
SID S§ X, X, Vecc Vss
SOD 4 28
- Ays
High-Order
Address Bus
TRAP 6
Ky 21
RST 7.5 7
RST 6.5 8
RST 5.5 9
INTR 10
AD,
B8085A Multiplexed
READY 35 Address/Data
oLD 39 i
1 AD, | 12
RESET IN 36
. - ALE
29
o = S,
INTA 11 33
> S,
HIL.DA 38 S
- 34 = 1O/M
32 WD
| S
3 = WR

T

RESET
ouT

37l

CLK
ouT

Control
and
Status Signals

 Control and Status Signals :-

o ALE-Address Latch Enable:

v’ This is a positive going pulse generated every time the 8085
begins an operation (machine cycle): it indicates that the
bits on AD,-AD, are address bits.

v’ This signal is used primarily to latch the low-order address
from the multiplexed bus and generate a separate set of
eight address lines. A,-A,.

o RD-READ :
v This is a Read control signal (active low).

v' This signal indicates that the selected I/O or memory
device is to be read and data are available on the data bus.

v WR-WRITE :
v This is a Write control signal (active low).

v' This signal indicates that the data on the data bus are to
be written into a selected memory or I/O location.

* ¢ Control and Status Signals :-o ALE-Address Latch Enable:This is a positive
going pulse generated every time the 8085begins an operation (machine
cycle): it indicates that thebits on AD7-AD, are address bits.This signal is
used primarily to latch the low-order addressfrom the multiplexed bus and
generate a separate set ofeight address lines. A7-A0-o RD-READ :This is a
Read control signal (active low).This signal indicates that the selected I/O
or memorydevice is to be read and data are available on the data
bus.WR-WRITE :This is a Write control signal (active low).This signal
indicates that the data on the data bus are tobe written into a selected
memory or |/O location.

o IO/M :

v' This is a status signal used to differentiate between 1/0
and memory operations.

v When it is high it indicates an /O operation; when it is
low, it indicates a memory operation.

v This signal is combined with RD (Read) and WR (Write) to
generate I/O and memory control signals.

o $;&S,:
v' These status signals, similar to I0/M.

v’ They can identify various operations, but they are rarely
used in small systems

*|O/M :This is a status signal used to differentiate between |/Oand
memory operations.When it is high it indicates an I/O operation;
when it islow, it indicates a memory operation.This signal is
combined with RD (Read) and WR (Write) togenerate I/O and
memory control signals.o S, & So :These status signals, similar to
I0/M.They can identify various operations, but they are rarelyused in
small systems

Status

Machine Cycle 10M S Sy Control Signals
Opcode Fetch | 0 I | @ =()

Memory Read 0 l 0 RD = ()

Memory Write () () l WR=0

/0 Read l l () RD =10

/0 Write I () | WR =0

interrupt Acknowledge I | l INTA =0

Halt L 0 0 Has o

Hold Z X X RD. WR = Z and INTA = |
Reset Z X X

* Interrupts :
Processor has 5 interrupts. They are presented below in
the order of their priority (from lowest to highest):

INTR is maskable interrupt. When the interrupt occurs
the processor fetches instruction from the bus.

RST 5.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC
register into stack and branches to 2CH (hexadecimal)
address.

RST 6.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC
register into stack and branches to 34H (hexadecimal)
address.

* ¢ |nterrupts :Processor has 5 interrupts. They are presented below
inthe order of their priority (from lowest to highest):INTR is maskable
interrupt. When the interrupt occursthe processor fetches
instruction from the bus.RST 5.5 is a maskable interrupt. When this
interrupt is... received the processor saves the contents of the PC
cregister into stack and branches to 2CH (hexadecimal)address.RST
6.5 is a maskable interrupt. When this interrupt isreceived the
processor saves the contents of the PCregister into stack and
branches to 34H (hexadecimal)address.

RST 7.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC
register into stack and branches to 3CH (hexadecimal)
address.

TRAP is a non-maskable interrupt. When this interrupt
is received the processor saves the contents of the PC
register into stack and branches to 24H (hexadecimal)
address.

All maskable interrupts can be enabled or disabled using
EI and DI instructions.

* RST 7.5 is a maskable interrupt. When this interrupt isreceived the
processor saves the contents of the PCregister into stack and
branches to 3CH (hexadecimal)address.TRAP is a non-maskable
interrupt. When this interruptis received the processor saves the
contents of the PCregister into stack and branches to 24H
(hexadecimal)address.All maskable interrupts can be enabled or
disabled usingEl and DI instructions.

 Microprocessor Communication and Bus Timings

A Data Bus
4F

Internal Data Bus
Memo
= B ¢ —
2000
ALU Instruction D E
Decoder
H L
2004
Stack 2008
Pointer : 4aF 2005
Program
Counter J
s o
Control 2005 F
Loge Address Bus
4F
RD

CLK

ALE

10/M

b - Opcode Fetch —]

T, T Ta Ts

20H High-Order Unspeci-
E Memo Address fied
Low-Order

05H - 4FH Opcode)-—-— ———————
Memory Address f \
—\ Status IO/F = 0,S9=1,8, = Opcode Fetch

TIMING SIGNALS FOR FETCHING AN INSTRUCTION

At T1 , the high order 8 address bits (20H) are placed on
the address lines A8 — A15 and the low order bits are
placed on AD7-ADO.

The ALE signal goes high to indicate that ADO — AD8 are
carrying an address.

At exactly the same time, the IO/M signal goes low to
indicate a memory operation.

At the beginning of the T2 cycle, the low order 8 address
bits are removed from AD7- ADO and the controller
sends the Read (RD) signal to the memory.

The signal remains low (active) for two clock periods to
allow for slow devices.

During T2 , memory places the data from the memory
location on the lines AD7- ADO .

* TIMING SIGNALS FOR FETCHING AN INSTRUCTIONAt T1, the high order 8
address bits (20H) are placed on>the address lines A8 - A15 and the low
order bits areplaced on AD7-ADO.The ALE signal goes high to indicate that
ADO - ADS8 arecarrying an address.At exactly the same time, the I0/M
signal goes low toindicate a memory operation.At the beginning of the T2
cycle, the low order 8 addressbits are removed from AD7- ADO and the
controllersends the Read (RD) signal to the memory.The signal remains low
(active) for two clock periods toallow for slow devices.During T2 , memory
places the data from the memory>location on the lines AD7- ADO .

 During T3 the RD signal is Disabled (goes high). This turns
off the output Tri-state buffers in the memory. That makes
the AD7- ADO lines go to high impedence mode.

 The machine code or the byte (4FH) is decoded by the
instruction decoder, and the contents of the
accumulator are copied into register C. This task is
performed during the period T4

* During T3 the RD signal is Disabled (goes high). This turnsoff the
output Tri-state buffers in the memory. That makesthe AD7- ADO
lines go to high impedence mode.The machine code or the byte
(4FH) is decoded by theinstruction decoder, and the contents of
theaccumulator are copied into register C. This task isperformed
during the period T4

« DEMULTIPLEXING AD7-ADO

 From the above description, it becomes obvious that
the AD7- ADO lines are serving a dual purpose and
that they need to be demultiplexed to get all the
information.

* The high order bits of the address remain on the bus
for three clock periods. However, the low order bits
remain for only one clock period and they would be
lost if they are not saved externally.

* Also, notice that the low order bits of the address
disappear when they are needed most.

* To make sure we have the entire address for the full
three clock cycles, we will use an external latch to
save the value of AD7- ADO when it is carrying the
address bits. We use the ALE signal to enable this
latch.

e« DEMULTIPLEXING AD7-ADQOe From the above description, it becomes
obvious thatthe AD7- ADO lines are serving a dual purpose andthat they
need to be demultiplexed to get all theinformation.e The high order bits of
the address remain on the busfor three clock periods. However, the low
order bitsremain for only one clock period and they would belost if they
are not saved externally.e Also, notice that the low order bits of the
addressdisappear when they are needed most.® To make sure we have the
entire address for the fullthree clock cycles, we will use an external latch
tosave the value of AD7- ADO when it is carrying theaddress bits. We use
the ALE signal to enable thislatch.

« DEMULTIPLEXING AD7-ADO

8085
Demultiplexing AD7-ADO >

A15-A8

AD7-ADO> Hlh! o >
D, D, >

* Given that ALE operates as a pulse during T1, we
will be able to latch the address. Then when ALE
goes low, the address is saved and the AD7- ADO
lines can be used for their purpose as the bi-
directional data lines.

ALE

* Given that ALE operates as a pulse during T1, wewill be able to latch
the address. Then when ALEgoes low, the address is saved and the
AD7- ADOlines can be used for their purpose as the bi-directional
data lines.

« CYCLES AND STATES

* From the above discussion, we can define terms that
will become handy later on:

« T- State: One subdivision of an operation. A T-state
lasts for one clock period.

* An instruction’s execution length 1is wusually
measured in a number of T-states. (clock cycles).

 Machine Cycle: The time required to complete one
operation of accessing memory, I[/O, or
acknowledging an external request.

» This cycle may consist of 3 to 6 T-states.

* Instruction Cycle: The time required to complete the
execution of an instruction.

* In the 8085, an instruction cycle may consist of 1
to 6 machine cycles.

e o CYCLES AND STATESe From the above discussion, we can define
terms thatwill become handy later on:e T- State: One subdivision of
an operation. A T-statelasts for one clock period.e An instruction's
execution length is usuallymeasured in a number of T-states. (clock
cycles).e Machine Cycle: The time required to complete
oneoperationofaccessingmemory, I/0O,oracknowledging an external
request.® This cycle may consist of 3 to 6 T-states.e Instruction Cycle:
The time required to complete theexecution of an instruction.e In
the 8085, an instruction cycle may consist of 1to 6 machine cycles.

* GENERATING CONTROL SIGNALS

- The 8085 generates a single RD signal. However, the
signal needs to be used with both memory and [/O. So,
it must be combined with the IO/M signal to generate
different control signals for the memory and I/O.

» Keeping in mind the operation of the IO/M signal we
can use the following circuitry to generate the right set
of signals:

8085
741832

IO/'M b -) TERTR
— r—q

RD p

WR | C—
o e Do— MEMW

74L.S04

IOW

« «GENERATING CONTROL SIGNALSe
The 8085 generates a single RD
signal. However, thesignal needs
to be used with both memory and
1/0. So,it must be combined with
the |IO/M signal to
generatedifferent control signals
for the memory and I/0O.® Keeping
in mind the operation of the I0/M
signal wecan use the following
circuitry to generate the right setof
signals:

RES RES S TRAP SID :
l TDT‘ l 5.5 lc. 5 fz.is l l 5?
INT
INTERRUPT CONTROL SERIAL /0 CONTROL
5 8 BIT INTERNAL i
I:r DATABLUS ? I:r
ACCUMU- (8) [*] RDESGTI%}ECHO'\ MULTIPLXER
LATOR TEMP REG STER (g,
(8) R W(8)
2 E | TEMP.REG. -
P . CREGTS)
BREG(8)
FLAG(5) [- [Basea
FLIP FLOPS ; EREG(S)
_ INSTRUCTION L | HREG(8) L REG(8)
A DECODERANIY | f M oriee
LOGIC UNIT (ALU) T SA HINE E | STACKPOINTER (16)
- - a ENCODING T | PROGRAM COUNTER (16)
SV T | [TNCREANENT 7 DECREAMENT
U ADDRESS LATCH (16)
GND
X TIMING AND CONTROL I
=1k —
s ?DDRESS BUFFER (DATA / ADDRESS
w>°F) BUFFER (8
CONTROL STATUS (8)
u;l T LL l l } l T lRESEl’ & .-\,,d.L,L ﬂanSS/
UT READY RDWR ALE > ! 10/M HOLDHLDA RESETOUT ADDRESS BUS AD, — ABj -

BUFFER BUS

THE 8085 MACHINE CYCLES

* The 8085 executes several types of instructions with
each requiring a different number of operations of

different types. However, the operations can be
grouped into a small set.

* The three main types are:
- Memory Read and Write.
* I/O Read and Write.
- Request Acknowledge.

* These can be further divided into various operations
(machine cycles).

e THE 8085 MACHINE CYCLESe The 8085 executes several types of
instructions witheach requiring a different number of operations
ofdifferent types. However, the operations can begrouped into a
small set.® The three main types are:®* Memory Read and Write.e |/O
Read and Write.® Request Acknowledge.e These can be further
divided into various operations(machine cycles).

- OPCODE FETCH MACHINE CYCLE

The first step of executing any instruction is the
Opcode fetch cycle.

* In this cycle, the microprocessor brings in the
instruction’s Opcode from memory.

To differentiate this machine cycle from the very
similar “memory read” cycle, the control & status
signals are set as follows:

* [O/M=0, sO and s1 are both 1.
- This machine cycle has four T-states.

The 8085 uses the first 3 T-states to fetch the
opcode.

T4 is used to decode and execute it.

» [t is also possible for an instruction to have 6 T-
states in an opcode fetch machine cycle.

e OPCODE FETCH MACHINE CYCLEe The first step of executing any
instruction is theOpcode fetch cycle.e In this cycle, the
microprocessor brings in theinstruction's Opcode from memory.e To
differentiate this machine cycle from the verysimilar "memory read"
cycle, the control & statussignals are set as follows:e 10/M=0, sO and
s1 are both 1.e This machine cycle has four T-states.e The 8085 uses
the first 3 T-states to fetch theopcode.e T4 is used to decode and
execute it.e It is also possible for an instruction to have 6 T-states in
an opcode fetch machine cycle.

M, (Opcode Fetch)

M, (Memory Read)

T, T. T T, T, T
CLK
High-Order arill High-Order
Ais=Ax] 204 Memory Address U"’pec'fmdx i Memory Address
Low-Order Low-Order |
AD,-
AD, 004 —-(BE“ Opcode p—~}j~—————-— —(OlH

Memory Address

ALE (—\

J--4 32JH Data

L

V__\

Memory Address]

|

i[J

M Ex !
Status IO/M
|

Opcode
Fetch

[O/M = 0, S,

|

7
77

— I‘Q" —

0 Stptus

Voea 1
—

« THE MEMORY READ MACHINE CYCLE

* To understand the memory read machine cycle, let’s
study the execution of the following instruction:

s MVI A, 32

2000H 3E

2001H 32

* In memory, this instruction looks like:

* The first byte 3EH represents the opcode for
loading a byte into the accumulator (MVI A), the
second byte is the data to be loaded.

* The 8085 needs to read these two bytes from memory
before it can execute the instruction. Therefore, it will
need at least two machine cycles.

* The first machine cycle is the opcode fetch
discussed earlier.

* The second machine cycle is the Memory Read
Cyele.

*the memory read machine cyclee To understand the memory read
machine cycle, let'sstudy the execution of the following instruction:e
MVI A, 322000H3Ee In memory, this instruction looks like:2001H32e
The first byte 3EH represents the opcode forloading a byte into the
accumulator (MVI A), thesecond byte is the data to be loaded.® The
8085 needs to read these two bytes from memorybefore it can
execute the instruction. Therefore, it willneed at least two machine
cycles.® The first machine cycle is the opcode fetchdiscussed earlier.e
The second machine cycle is the Memory ReadCycle.

« MACHINE CYCLES VS. NUMBER OF BYTES IN

THE INSTRUCTION

* Machine cycles and instruction length, do not have a direct

relationship.

* To illustrate lets look at the machine cycles needed to execute

the following instruction.
+ STA 2065H

« This is a 3-byte instruction requiring 4 machine cycles and 13 T-

states.

* The machine code will be stored
in memory as shown to the right

32H

65H

20H

2010H
2011H
2012H

» This instruction requires the following 4 machine cycles:

* Opcode fetch to fetch the opcode (32H) from location 2010H,
decode it and determine that 2 more bytes are needed (4 T-

states).

« Memory read to read the low order byte of the address (65H) (3

T-states).

 Memory read to read the high order byte of the address (20H) (3

T-states).

A memory write to write the contents of the accumulator into

the memory location.

e ¢ MACHINE CYCLES VS. NUMBER OF BYTES INTHE INSTRUCTIONe Machine
cycles and instruction length, do not have a directrelationship.e To
illustrate lets look at the machine cycles needed to executethe following
instruction.e STA 2065He This is a 3-byte instruction requiring 4 machine
cycles and 13 T-states.32H 2010-¢ The machine code will be stored65H
2011Hin memory as shown to the right20H2012He This instruction
requires the following 4 machine cycles:® Opcode fetch to fetch the
opcode (32H) from location 2010H,decode it and determine that 2 more
bytes are needed (4 T-states).e Memory read to read the low order byte of
the address (65H) (3T-states).e® Memory read to read the high order byte
of the address (20H) (3T-states).e Ae A memory write to write the
contents of the accumulator intothe memory location.

LECTURE 13
MICROPROCESSORS

Microprocessors

Input / Output

Input Devices

Switches , Keyboard , '
Output Devices: @

Seven Segments (LEDs) , printer , Monitor ,..

The processor reads the instructions from the

| memory , data from the input devices, J
2

* Input / Outputinput DevicesSwitches , Keyboard, ...Output
Devices:Seven Segments (LEDs) , printer, Monitor,...The processor
reads the instructions from thememory, data from the input
devices,processes them, produces the output

(heCPU includes ALU, control Units, and Various Registers

Microprocessor as CPU

Central Processing Unit

\

Program Counter] [)
[T &
{ J P,
L J Reqisters

o
T3l
E-&8-E

Main
Memory

-The CPU includes ALU, control
Units , and Various Registers

-Known as Microprocessor

St

The Von Neumann Model

It uses von Neumann
execution cycle

(also called the fetch-
decode-execute cycle)

The Von Neumann Model
It uses von Neumann execution cycle
(also called the fetch-decode-execute cycle)

"

Central Processing Unit

[Ptogram CounterJ {

Nl N

e
L I\

(l] Registers

Arithmetic Logic f<,
Unit

Main
Memory

InputOuput
System

/

The Von Neumann Model (Cont.)

\

A cycle could be as follows:

The control unit fetches the next program
instruction from the memory, using the program
counter to determine where the instruction is
located.

The instruction is decoded into a language the
ALU can understand.

Any data operands required to execute the
instruction are fetched from memory and placed
into registers within the CPU.

The ALU executes the instruction and places the
results in registers or memory.

Central Processing Unit

[Program CounsaJ E

ol B N

1L
C _ZN
(l] Registers

Arithmetic Logic f<,

v

Unit

InputOutput
System

Main
Memory

* A cycle could be as follows:The control unit fetches the next
programinstruction from the memory, using the programcounter to
determine where the instruction islocated.The instruction is decoded
into a language theALU can understand.Any data operands required
to execute theinstruction are fetched from memory and placedinto
registers within the CPU.The ALU executes the instruction and places

theresults in registers or memory.

/

Instruction Processing
Von Neumann execution cycle

Fetch instruction from memory

,_St.o.'r,el, result

The Modified Von Neumann Model

The data bus: o)

i | f G
Moves data from main memory (ALU, Registers, emory
and Controh

Input
and
Output

to the CPU registers (and vice versa). t 7 7Y

The address bus: DataBus R

Holds the address of the data that -

r

the data bus is currently accessing. ControiBus

The control bus:
Carries the necessary control signals that specify how the

information transfer is to take place.

K

Advances in Semiconductor
Technology

IC- Integrated Circuits = few transistors and diodes on
one chip

SSI —small scale Integration—> few gates on one chip
MSI- Medium scale Integration- 100 gates on a chip
LSI — Large Scale Integration — 1000 gates on a chip
VLSI — Very large scale Integration

SLSI — Super Large Scale Integration

Borders between VLSI and SLSI are not strict.

* Advances in SemiconductorTechnologylC- Integrated Circuits -> few
transistors and diodes onone chipSSl -small scale Integration-> few
gates on one chipMSI- Medium scale Integration- 100 gates on a
chipLSI - Large Scale Integration - 1000 gates on a chipVLSI - Very

large scale IntegrationSLSI - Super Large Scale IntegrationBorders
between VLSI and SLSI are not strict.

/

Microprocessor Programming

\

Machine language
Instruction written in binary format

Microprocessor programming
* Machine language
Instruction written in binary
format

* Assembly language
Text based format add a} b
* *High level language

Assembly language
Text based format > Add A , B
High level Language
E @& N d
(Source Code |C°mpller /
nterpreter
J _) &

Object Code }

o

/izni?ruction 280 Instructions and \

s and

aphanum Alphanumeric Codes
eric codes

8-bit word length
158 instructions

ASCII — American Standard Code for Information
Interchange.

Each character has its equivalent binary format in a 7-bit code

EBCDIC — Extended Binary Coded Decimal Interchange
Code — 8-bit code

N o

10

/

Microprocessor Based System

Microprocessor-Based System

\

s N\ g 2
G P Memory
\ /
Microprocessor
8 2
¢ D /0
& 4 N Y,

13

4 A

Microprocessor Unit

M icPrf'%eﬁm'g%eB g%wbth'g dtjﬁdiet of instructions

Programmable logic unit with a designed
set of instructions

What it does:

Fetches the instructions from the memory, one by
one

Reads the input data from the input units

Performs the data manipulation specified by the
instruction

\ Writes the data to the output devices /

14

\

MPU frequently communicates with the memory, I/0 devices

Microprocessor Unit

MPU frequently communicates with the memory, I/0
devices

Fetch, Decode, and Execute operations

Can it be interrupted ?
Program initiated operation — interrupt done by a
program.

Peripheral initiated operation — interrupt done by external
devices
® E.g. important data on the input during writing to the printer J

15

7

What does it needs to do so..

What does it needs to do so..

\

b

Group of logic circuits

Set of signal to transfer information

Control signals for timing

Clock circuits

16

What does it needs to do so...Group of logic circuitsSet of
signal to transfer informationControl signals for timingClock
circuits

Program-initiated operations
and Buses

Microprocessor and Memory Operations
Memory Read
® Reads instructions or data from the memory

Memory Write
® Writes instructions and data into memory

I/0 Read

® Accepts data from input devices

I/0 Write

® Writes data to output devices

17

Program-initiated operationsand BusesanMicroprocessor and
Memory OperationsMemory ReadReads instructions or data
from the memoryMemory WriteWrites instructions and data
into memoryl/O ReadAccepts data from input devicesl/O
WriteWrites data to output devices

/

Program-initiated operations
and Buses

From where to read or to write?
We need an address! Right?

How the input/output will know about the operation?
We need a control signal to tell them

MPU Operations Steps:
Identify the address
Send synchronization SIGNAL- control signal
Transfer the binary data

k So. how many buses do we need?

18

Program-initiated operationsand BusesFrom where to read or
to write?We need an address! Right?How the input/output will
know about the operation?We need a control signal to tell
themMPU Operations Steps:ldentify the addressSend
synchronization SIGNAL- control signaleTransfer the binary
dataSo, how many buses do we need?

/

"

Buses
Address Bus :)
Identify the memory P Inpis
: (ALU, Registers, Memary Ao
locations and Control P
L /\J A /\44 L /\ /\
Data Bus - _
. Data Bus \ /
Holds the data during T _——

transfer operation

Control Lines
For timing signal

[

Control Bus

19

BusesAddress Busldentify the memorylocationsCPU(ALU,
Registers,and Control)MemorylnputandOutputData BusData
BusHolds the data duringAddress Bustransfer operationControl
BusControl Lines® For timing signal

\

Buses

Address Bus Size - bits

Depends on the number of memory locations that
can be accessed

7Z.80 has 16 address lines to address 21° locations

Data Bus Size - bits
Depends on the data to be transferred
/.80 has 8 bits data bus
What is the maximum memory size Z80 can use?

20

BusesAddress Bus Size - bitsDepends on the number of memory
locations thatcan be accessedZ80 has 16 address lines to
address 216 locationsData Bus Size - bitsDepends on the data
to be transferredZ80 has 8 bits data busWhat is the maximum

memory size Z80 can use?

/

Externally Initiated operation

"

Interruptions categories :
Reset — e.g. timer to reset everything in the MPU

Interrupt — stop temporarily and do something , then come back.

Wait: the memory can not handle the MPU request , wait signal
must be generated.

Bus Request: sometimes the processor is too slow to hand a
request that can be handled faster by another device.

® E.g transfer large amount of data through the DMA could be
faster than using the MPU

A

21

/

Memory
Memory Cell
D Q(t+1) D 5
0 0 Reset
1 1 Set
> —

22

/

Memory Continue

4-bit Register

D3 D2

D Q

O

e
T
ol

Qo

23

e

4 X 8 bit register

Input

Output

Memory Unit

|
- Y
N /
.". -

24

/

How the MPU Writes into the Memory?

\

MPU places the 16 bit address on the address bus

Memory interfacing circuits will decode address to
specify the target register

MPU Places a byte on the data bus

MPU sends a control signal (Memory Write) to
the memory to write

o

25

How the MPU Writes into the Memory?eMPU places the 16 bit
address on the address busMemory interfacing circuits will
decode address tospecify the target registerMPU Places a byte
on the data buse MPU sends a control signal (Memory Write)

tothe memory to write

/

How the MPU reads from the Memory?

\

MPU places the 16 bit address on the address bus

Memory interfacing circuits will decode address to
specify the target register

MPU sends a control signal (Memory Read) to
the memory to enable the output buffer

The memory puts the data on the data bus and the

\ processor will read it

o

26

How the MPU reads from the Memory?MPU places the 16 bit
address on the address busMemory interfacing circuits will
decode address tospecify the target registerMPU sends a
control signal (Memory Read) tothe memory to enable the
output buffereThe memory puts the data on the data bus and
theprocessor will read it

LECTURE 13
MICROPROCESSOR

/

Instruction Processing
Von Neumann execution cycle

Fetch instruction from memory

,_St.o.'r,el, result

The Modified Von Neumann Model

The data bus: o)

i | f G
Moves data from main memory (ALU, Registers, emory
and Controh

Input
and
Output

to the CPU registers (and vice versa). t 7 7Y

The address bus: DataBus R

Holds the address of the data that -

r

the data bus is currently accessing. ControiBus

The control bus:
Carries the necessary control signals that specify how the

information transfer is to take place.

\

Buses

Address Bus Size - bits

Depends on the number of memory locations that
can be accessed

7Z.80 has 16 address lines to address 21° locations

Data Bus Size - bits
Depends on the data to be transferred
/.80 has 8 bits data bus
What is the maximum memory size Z80 can use?

20

BusesAddress Bus Size - bitsDepends on the number of memory
locations thatcan be accessedZ80 has 16 address lines to
address 216 locationsData Bus Size - bitsDepends on the data
to be transferredZ80 has 8 bits data buse What is the maximum

memory size Z80 can use?

/

Externally Initiated operation

"

Interruptions categories :
Reset — e.g. timer to reset everything in the MPU

Interrupt — stop temporarily and do something , then come back.

Wait: the memory can not handle the MPU request , wait signal
must be generated.

Bus Request: sometimes the processor is too slow to hand a
request that can be handled faster by another device.

® E.g transfer large amount of data through the DMA could be
faster than using the MPU

A

21

Externally Initiated operationinterruptions categories :Reset - e.
g. timer to reset everything in the MPUlInterrupt - stop
temporarily and do something , then come back.Wait: the
memory can not handle the MPU request , wait signalmust be
generated.Bus Request: sometimes the processor is too slow to
hand arequest that can be handled faster by another device.E.g
transfer large amount of data through the DMA could befaster
than using the MPU

/

Memory
Memory Cell
D Q(t+1) D 5
0 0 Reset
1 1 Set
> —

22

/

Memory Continue

4-bit Register

D3 D2

D Q

O

e
T
ol

Qo

23

e

4 X 8 bit register

Input

Output

Memory Unit

|
- Y
N /
.". -

24

/

How the MPU Writes into the Memory?

\

MPU places the 16 bit address on the address bus

Memory interfacing circuits will decode address to
specify the target register

MPU Places a byte on the data bus

MPU sends a control signal (Memory Write) to
the memory to write

o

25

/

How the MPU reads from the Memory?

\

MPU places the 16 bit address on the address bus

Memory interfacing circuits will decode address to
specify the target register

MPU sends a control signal (Memory Read) to
the memory to enable the output buffer

The memory puts the data on the data bus and the

\ processor will read it

o

26

LECTURE 14 =

Microcontrollers

Fundamentals of Logic Design

By Dana Utebayeva

Micro-Controller

* A single chip Computer (to some extent)

*Has CPU
1. RAM
2. EEPROM
3. 1/Oin form of pins
4

Peripherals (Timer , Communication modes,

ADC

etc)

Background

Line Following Robots
Wireless keyboards

They were made using
Microcontrollers

Suppose we want to make a Line following
Robot

What dowedo?

Use a computer with 2.4Ghz Intel core |7
with 4 Gb RAM , 500 Gb Hard disk , 1 Gb
Graphics Card ??

Why not a Computer ?

PC is a general purpose computer.

Can run thousand of softwares

Microsoft ppt in which you are seeing this presentation
Games (NFS , AOE , Call of Duty)

Highly expensive

Why MCU

Small reflected by the word “MICRO”
Inexpensive

|deal for doing repetitive tasks
Easy to use
Highly Efficient and fast

Selecting a MCU

Two family of MCU extremely popular
a) AVR
b) PIC

We use AVR series of MCU from Atmel
The instructions are fed once in the form of a Hex file

Tools Required -> CVAVR

PC Running IDE for
entering.editing and compiling
source program

Compiler -> CVAVR

The code is written in C language so we need to convert it into
the format that Atmega understands

’) 1-
R -Compiler*l;{;gg

hello hex

1d

To PCs Senal Parallel .
Trzlor usB port : St U d IO
AR =

AVR ProgrammerT

3.

ISP Headers On Target |

ISP Connector Of
Programmer

Avr Programmer

-
-
v.r

USB based STK500 Prog_;:a'rﬁmer
for AVR microcontrollers

o

M AUR USB: Programmer,
= '

OPS

74HC126N
A8302

So we need two softwares overall

a) CVAVR -> Editor and Compiler
b) Avr Studio -> Transfer Code to Atmega

Atmega 16

(XCKITO) PBO O] 1 ~" 405 o (ADCO)
(T1) PB1 2 39 [PA1 (ADC1)
The ATmegal6 rano pe2d 3 38 O PA2 (ADC2)
: (OCO/AIN1) PB3 [4 37 [1 PA3 (ADC3)
* 40 pin IC. (53) PB4 O 5 36 [0 PA4 (ADC4)
, (MOSI) PB5 O 6 35 [PA5 (ADCS5)
* 32 pinsforl/0O. (MISO) PB6 O] 7 34 [PAG (ADCH)
. (SCK) PB7 O] 8 33 [0 PA7 (ADCT)
* 8 pins reserved. RESET O 9 32 [1 AREF
o vce o 10 31 O GND
* |/O pins divided GND O 11 30 b AVCC
. XTAL2 . 12 29 O PC7 (TOSC2)
into 4 groups of XTAL1] 13 28 b1 PC6 (TOSC1)
- (RXD) PDO] 14 27 b PC5 (TDI)
8 pins, called (TXD) PD1 O 15 26 O PC4 (TDO)
ports_ (INTO) PD2] 18 25 O PC3 (TMS)
(INT1) PD3] 17 24 (1 PC2 (TCK)
. (OC1B) PD4 O] 18 23 b PC1 (SDA)
Ports labeled as (OC1A) PD5] 19 22 B PCO (SCL)
A, B, Cand D. (ICP1) PD6 [20 21 [PD7 (OC2)

Basics of C language

If else block
If(condition)

While& For

While (conditon)

Some C operators

| is bitwise OR.
Eg. 10100111 | 11000101

& is bitwise AND.
Eg. 10100111 & 11000101

~ is bitwise NOT.
Eg. ~10100110 01011001

<< is shift left. >> is shift right.

11106111

10000101

Lets Begin by blinking
a simple LED

Circuit Diagram

U1
D1
LED-GREEN
<TEXT=

R1

100R
<TEXT=

PP EIEHED B ¢

Tk FRERFEFE FRATAHT

{géz'. D
ATMEGA1E
<TEXT=

Getting Started with CVAVR

Project

Open CVAVR

‘:‘-Code\fsmnA /R - s2.prj - [EXF ! ’
D File Edit Project Tools Settmgs Windows Help ‘.- ”5H b

53 u)

olo|s| s x|+|s| Bjma| |

£ olelal 8| |- 1la] aln] s
Navigator ICode Templates < [>
= &¥% CodeVisionAVR
=-[F Project: s2
15 Notes
[s2.c

“[§ OtherFiles

Messages

! [Modified | Insert |

Dwv@ A) 1229AM f

Go to File

D Edit Project Tools Settings Windows Help ‘:”f”i
| e wlm|el e @ olo|s| 8% |«[s| =wal 2|
en

GR:open v| T
H save Ctrl+S

Save As...
& Save All
@ Close

Close Project

i

=

Na
EE

i Convert to Library

Page Setup
& Print Ctri+P

£ Exit

Messages

! [Modified | Insert |

PO © LM - o ¢ 2ol

Click on New

[[File] Edit Project Tools Settings Windows Help - ”EH !

olo|s| 8% |«[s| =wal 2|

i

ﬂzt

= CATTI . o[@| &)s| o
|

— & Open
Na P 1
EE

% Reopen »
H save Ctrl+S
Save As...
& Save All
@ Close
Close Project

i Convert to Library

Page Setup
& Print Ctri+P

£ Exit

Messages

! [Modified | Insert |

PO © LM - o ¢ 2ol

Select Project- > Click OK

&¥ CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2.c

D File Edit Project Tools Settings Windows Help ‘; Hi‘”i
| ole|al 8] of-||a| aln| sl2lo]o|s| 8lk|v|s| slmw|
Navigator [Code Templatec ¢ | » 1
= &% CodeVisionAVR
=-[§ Project s2
-5 Notes
[s2c
[Other Files
[% Create New I?ile u
~File Type——
X Cancel
Messages

\ [Modified | Insert |

& W € ET@ ~ () 1231AM ||

Click YES

£¥ CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2.c]

D File Edit Project Tools Settings Windows Help

E| ple|d] 8] o|«|i|n|al ala| a3 zle|o|s 2k v 2| =(m@| 2|
Navigator ICode Templatec 4 | 1
25X CodeVisionAVR
=-[§ Project s2
18 Notes
oo D s2.c
“[§ OtherFiles
You are about to create a new project.
Do you want to use the CodeWizardAVR?
Messages

| [Modified | Insert |

& ® € Ftr 7) 1231AM |

Select Chip

£X CodeVisionAVR - s2.prj - [E:\Program Files\Cv avr\bicycle
D File Edit Project Tools Settings Windows Help

| nle|@]| 8 o|«|s|n|a] ala] sliztlo]|o|s] x|« 8| 2w 2
Navigator |Code Templates 4 [» 1 -
a%[%oc;ewsgm;\m B CodeWizardAVR - untitled.cwp S
=] roject s e ————
15 Notes Eile Help
i @thz‘;,l USART I Analog Comparatar I ADC
""" therFiles SPI 2 | 1wire | 2Wire(20)
| Bit-Banged | Project Information
i Ports | External IRQ | Timers
Chip: |ATmega16 VI
Clock: ISAUUUUUU 'ZI MHz
[~ Check Reset Source
Program Type:
IAppIication
Messages

PO M - oo vaav |

Introduction

to 1/0

* Atmega has total of 40 pins out of which 32 pins can be
used as Input or Output

* These 32 pins are divided into4 groups of 8
pins PORTA, PORTB , PORTC, PORTD

Each PORT in AVR has eree related Registers.

/ GROUP D \

DDRD PORTD PIND

Data Direction register (DDR)

This sets direction for all pins (32)
Direction for these pins can be Input or Output
To blink an LED we need to set pin as “OUTPUT” but “HOW* ?

DDRA = 0b00000001 ;
DDRA = 0x01 ;
1 Stands for Output & 0 stands for Input

DDRA|7]|6|5]4|3|2]1]0

A7 A6 A5 A4 A3 A2 Al AO

Interpretation of DDR values

* |f a bit on the DDR register is 9, then the
corresponding pin on the associated port is

set as input.

* Similarly, if the bitis 1, then the pin is set as
output.

* Example: if DDRA = 0b10010110, then:

DDRAlOP IN INIOP IN OP|OP IN

MSB LSB

What is Next ?

We have set the Pin as Output

What else do we need to light the LED ??

Supply of 5 Volts !!! This is given by PORT Register

PORT Register

* Only after you have set the Pin to Output you can
control them through this Register

* It is a 8 bit register . It corresponds to the pin in same manner
as that of DDR Register

* Used to set output value (0 or 1) only if the
corresponding Pin has been set as output by DDR Register

* PORTA= Ob 00000001;
or

* PORTA=0x01 ;
* 1 stands for 5V
* 0 stands for OV

MSB‘LLLLLLLH«LSB

Simple Questions

DDRA= 0b 00101100
DDRD = Oxf4
DDRC=0b 01111110
DDRB = 0x3b

Assume all 32 pins set as output

PORTA = 0b00001100;
PORTD =0b11110000;
PORTB.4=1;
PORTC.2=1;

Setting 1/0

Go to Ports

&X CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2.c]
D File Edit Project Tools Settings Windows Help

E| oleja] & -

o[[o]m] Al 8]

olo|s| o %% s =(mal 2]

r.|2:

&% CodeWizardAVR - untitled.cwp 1]
File Help

USART l Analog Comparator I ADC

sPl | rec | 1wire | 2wire(20)

LCD I Bit-Banged | Project Information
Chip Pors | ExemallRQ | Timers |

PotA |PortE | PortC | PortD |
Data Direction Pullup/Output Value
Bit0 In | T| Bit0
Bit1 In | T Bit1
Bitz In | T Bit2
Bit3 In | T| Bit3
Bitd In | T Bit4
Bit5 In | T| Bits
Bit6 In | T| Bit6
Bit? In | T|Bit?

Navigator | Code Templates ¢ | » | 198)] SFTOR=0x00;
= £ CodeVisionAVR | 199
=B Project s2 200 // LCD module inigisli=o«s
15 Notes 201 1cd init(16);
| -8 s2c 202
[Other Files 203 // Global enable

204f #asm("sei")
205 lcd _clear(
206 1lcd putsf (|
207 delay ms (1
208 lcd clear(
2098 while (1)
210 {
21
212
213
214
215
216
217
218 // Place yo
219
220
2219 }
222|

Messages

| 2221 |Modified | Insert

[

* Click on In to make that pin Output

* Can do so for all four ports

&¥ CodeVisionAVR - s2.prj - [E:\Program Files\Cv avr\bicycle\s2.

D File Edit Project Tools Settings Windows Help

e als e

E=| ple|d| 8 <|~|4]n

R

olo|s| #%|«[s| sBal 2|

Nawvigator |Code TemplatesLIL 198
=-5¥% CodeVisionAVR e
=-[F Project s2 gl

15 Notes 20

i [s2c 202
[OtherFiles 203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

SFICR=0x00;

Y

// LCD module initig ¥

CodeWizardAVR - untited.owp SRS

lcd init(16); Fil

// Global enable inf]
#asm("sei")
lcd clear():;
lcd putsf("r
delay ms (100
lcd clear():
while (1)
{

// Place your

};

222,

Messages

e Help

USART l Analog Comparator I ADC l
sPl | e | 1wire | 2wire(20) |
LCD | i ed | Project Information I
Chip Extemal IRQ | Timers |

PortA |PortB | PorC | PortD |

Data Direction Pullup/Output Value
Bit0 In | T| Bit0
Bit1 Out| 0] Bit1
Bit2 In | T| Bit2
Bit3 In | T| Bit3
Bitd Outl 0] Bit4
Bits In | T| Bit5
Bit6 In | T| Bite
Bit? In | T| Bit?

1

1|

© € M - 56 1 |

Click on File

&¥ CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2.
D File Edit Project Tools Settings Windows Help \
& nlela| 8 «[«|s|ne] ol o|2zo]o|s| sk v[s| BlnmD o |

Navigator[cedeTemplateM »|| 198 sFTOR=0%00; -

y
A0

- 199 (h
= ‘;‘gi,ﬁ‘;g"gﬁ 200 // 10D module initid S CodeWizardAVR - untitied cwp S
-5 Notes 2018 1cd _init (16); Help
0 s2¢ 202 B New aoc |
{3 OtherFiles 203 // Global enable inf|& Open ire (12C) |
204 #asm("sei") H save rmation |
208 lcd _clear(); Save As.. Timers |
206 lcd putsf("rq |- z
207 delay ms(100d| 3 bogmPeven
208 lcd clear(); 4 tValue
209 while (1) £ Exit
210 { Bit1 Out| 0] Bit1
el Btz In| T|Bit2
;:g Bit3 In| T|Bit3
214 Bit4 Oﬁut} 0| Bit4
215 Bits | T|Bit5
216 Bité In| T|Bit6
217 Bit? In| T Bit?
218 // Place your
219)
220 }: =
2218 }]
222 ~
Messages

\ 'Modified | Insert

© ¢ F P | A '3) 140AM d

Generate Save and Exit

&¥ CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2.c] -
D File Edit Project Tools Settings Windows Help [- 5 |

| olela) 8 <[« [u|n] ala| s[2z[o]s| 2|¢[s|s| sua] | |

I:Igt

Nevigator | Cade Templates | » || 198 SFTOR=0x%00; -
- 199 (h
= géﬁﬁig@m 200 // 1D module initid W CodeWizardAVR - untitledcwp ot
i) Notes 201 1cd init(16); Help
[s2c 202 B New apc |
[Other Files 203 // Global enable infl||& Open ire (12C) |
204 #asm("sei") H save rmation |
208 lcd _clear(); Save As.. Timers |
206 lcd putsf("re =
2 e
208 lcd clear(); = tValue
203 while (1) % Exit
210 { Bit1 Out| 0] Bit1
e Bit2 In | T| Bit2
;g Bit3 In| T|Bit3
214 Bit4 Outl 0] Bit4
215 Bits | T|Bit5
216 Bité In| T|Bit6
217 Bit7 | T|Bit?
218 // Place your
219 Ll
220 }; =
218} 7
222| =
Messages

©® €M - o6 taav |

Enter name (3 times)

&¥ CodeVisionAVR - s2.prj - [E\Program Files\Cv avr\bicycle\s2. L X
[9 File Edit Project Tools Settings Windows Help ‘;“i“i
| ple|d| 8 <|a|i|n|a| ala| & olo|s| 8% |«[s| =(m@ 2|

Navigator | Cade TemplatesﬂL 198 g o
l &% Save C Compiler Source File

ntugt

= $X CodeVisionAVR: ‘23
=-[§ Project s2 o Tl e m ek
15 Notes 201 Save in: |)} Cvavr _J & ek Bv
0 s2c 20, P Name Date modified
[B Other Files 203 -

ofl = *ﬁ ATHENA 6/24/2011 5:56 AM
5 seenHiaces bicycle 12/24/2011 2:34 PM
208 - bin 2/18/2011 2:15 PM
207 Deskiop boot loader test 5/23/2011 12:39 AM
208 = Code Templates 2/7/2011 12:27 AM
209 e eprom 5/30/2011 3:30 PM
;: Libraries EXAMPLES 2/6/2011 11:59 PM
5 '.A hall sensor 6/2/2011 2:47 AM
i Coeiter inc 6/25/2011 9:31 AM
214 o keyboar_11 5/30/2011 11:38 PM
215 m lib 2/6/2011 11:59 PM
216 Network mouse_test 5/24/2011 3:16 AM

21 S/N/IN11 246 DMA

}
29 File name: || L] Save | il
221 Save as type: |C Compilerfiles (*.c) :_I Cancel E

Messages

-

Where is the code stored ?

&¥ CodeVisionAVR - s2.prj - [E:\Program Files\Cv avr\bicycle\s2.c] L)
D File Edit Project Tools Settings Windows Help \ - a\ x‘

& nled| 8 of|«|i]n|a] ala ol Ro|o|s| ok« 2| =(ma| 2|
Navigator I Code Templates 4 [»|| 198 St T r R
Save C Compiler Source File —X
=-%% CodeVisionAVR 109k D L ——

=-[F Project s2 200 - S Ak Folv

7) Notes 201 Save in: I | Cvavr j & £

* D SZ-C_ 202 o Name e Date modified T

“.[§ OtherFiles 203 g —a
a4fl g ‘g A ATHENA 6/24/2011 5:56 AM

t
sl ek bicycle 12/24/2011 2:34 PM
206 - | bin 2/18/2011 2215 PM
207 Desktop | boot loader test 5/23/201112:39 AM | =
208) | Code Templates 2/7/2011 12:27 AM
e W=l | eprom 5/30/2011 3:30 PM
;1“ Libraries | EXAMPLES 2/6/2011 11:59 PM
212 * | hall sensor 6/2/2011 247 AM
213 Compules K inc 6/25/2011 9:31 AM
214 % | keyboar_11 5/30/2011 11:38 PM
215 & L. lib 2/6/2011 11:59 PM
216 Network | mouse_test 5/24/2011 3:16 AM
217, A an S/ANNTT DG DAA 3
218 g (I »
;123 File name: I :J il j
221 Save as type: |C Compiler files (*.c) Ll Cancel i
222) 5
Messages B N

|Modified | Insert

Then Click Save

Name of Project & Location

4 4 CodeVi;ionAVR - lecture.prj - [E:\Prog_ramjles\Cv avr\bicycle\lecture.c] .) y .
D File Edit» Project Tools Settings Windows Help [= | &| >: \

| ole(o] &) |-

8| als| o o|o|8| s ¥|+|s| BjmE| ¢

uiﬂRt

Nﬁ\/igatﬂr|CodeTempIates_‘_]LT] JE KKK KK KKK I KKK KKK I KKK KA IR KK KAKIKKAK KK KKK AR I KK A KKK KK N
5 ¥ CodevisionAVR 2] This l?rogram was produced by the ‘
&-[3 Project lecture 3 CodeWizardAVR V1.24.6 Standard
18 Notes 4fl Butomatic Program Generator =
=[] lecturee 5§ @ Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.1l.
[OtherFiles 6l http://www.hpinfotech.com | 4
7§ e-mail:office@hpinfotech.com
8
9l Project
10Q Version
11 Date : 1/6/2012
12§ Buthor : Rajat
13f Company : iitk
14 Comments:
15
16
17Q] Chip type : ATmegalé
18f Program type : BApplication
19§ Clock frequency : 8.000000 MHz

Memory model : Small
External SRAM size : 0

Data Stack size : 256
*‘k*****‘k**'k****‘*****‘k‘k‘k**‘k*‘k*************************/

#include <megalé6.h>

Messages

|4

Writing the Code

NOTE : We write our code in While block
While (1)

{
PORTA.1=1; // sets the Pin to 5 volts

PORTA.1=0; // sets the Pin to 0O volts
}

This makes the LED to blink but we cannot see blinking !!!

This is because Atmega runs at a frequency of 8000000
Hz

We need to introduce delay so as to see blinking
Use header file delay.h
Function to be used U delay_ms(time in millis);
While (1)

{
delay_ms(1000);
PORTA.1=1;

delay_ms(1000);
PORTA.1=0;

J

How to compile

Code is written in C language but Atmega
understands Hex file
so we need to convert the C file to Hex file

Compiling

X CodeVisionAVR - lecture.prj - [E:\Program Files\Cv avi\bicycle\lecture.c
D Eile Edit Project Tools Settings Windows Help

E| nle|B| 8] o|«|s]|n]al ala| ozr|e|o|s| 8 x|« s =(w|m 2] |
Na\/igﬂtof|CodeTempIates_‘J_’_' 1 /*******************«{k******:k************************** i
s ol This program wasCompile the pro;ectkhe W
= &K CodeVisionAVR p g
=-[8 Project lecture 3 CodeWizardAVR V1.24.6 Standard
15 Notes 48 Rutomatic Program Generator =
E S [3 lecture.c 50 © Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l.
[Other Files 6] http://www.hpinfotech.com |
7 email:office@hpinfotech.com
8
9l Project
10 Version
11§ Date : 1/6/2012
12f RButhor : Rajat
13 Company : iitk
14§ Comments:
15
16
17§ Chip type : ATmegalé
18 Program type : Application
198 Clock frequency : 8.000000 MHZz
20§ Memory model : Small
21 External SRAM size : 0
22f Data Stack size : 256
23 *’k‘k’k**‘k’k‘k’k‘k***‘k***‘k**********‘k*‘k‘k**‘k***‘k*‘k***********/
24
25/ #include <megal6.h> 3
Messages

12:37 PM

r;

Make the Project

X CodeVisionAVR - lecture.prj - [E:\Program Files\Cv avr\bicyc\lecture.c -
D Eile Edit Project Tools Settings Windows Help _

E| nle|B| 8] o|«|t|nal als] sl|e|o|s| 8 x|« s =(m@| 2| |
NﬁV'gﬂiDYICDdeTemplates_‘J_’_ 1 /*:k****‘k***‘k*******&;;e*%‘;;‘:c’;};gt EXEKXKEKXKIKXKAIKXKKXKIKKIK KKK f
= $% CodeVisionAVR cfj This program was Pl——!—J;e
=-[8 Project lecture 3 CodeWizardAVR V1.24.6 Standard
15 Notes 48 Rutomatic Program Generator =
4 3 lecture.c 50 © Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l.
[OtherFiles 6] http://www.hpinfotech.com
70l e-mail:office@hpinfotech.com
8
9l Project
10 Version
11}l Date : 1/6/2012
12f RButhor : Rajat
13 Company : iitk
14 Comments:
15
16
17§ Chip type : ATmegalé
18] Program type : Application
198 Clock frequency : 8.000000 MHZz
20§ Memory model : Small
21 External SRAM size : 0
22f Data Stack size : 256
23 *’k‘k**'k‘k’k*’k‘k’k*'k***'k***‘k*‘k‘k'k*‘k‘k'k***‘k***************‘k***/
24
25 #include <megal6.h> g
Messages

© "~ © €M - o6 nuw |

Check for errors

D Eile Edit Project Tools Settings Windows Help

| nle|d| 8 of«|1]n|a] als] =3 zjolelal alelelal almlal ol e
Nevigator | Code Templates ¢ | »|| 103 // INT1: off Information — -
SE¥ CodevisionAVR 104f // INT2: Off Campiler |,exss.gmb|er
E@ Project: lecture 105§ MCUCR=0x00; Chip: ATmegal
- IS Notes 106§ MCUCSR=0x00; Program type: Application
=-[7 lecture.c 107 Memory model: Small
& Included Files . Optimize for: Size
+ Global Variables 108§ // Timer(s})/Counter(s) (s)printf features: int, width
: 109§ TIMSK=0x00; (s)scanf features: int, width
#-F{} Functions G
i 3 110 Promote char to int: No
[OtherFiles | [|charis unsigned: Yes
111§ // Analog Comparator i b anime ey
112 // Rnalog Comparator: Enhanced core instructions: On
113§ // Bnalog Comparator ql Automatic register allocation: On
{11 ACSR=0xB0; 247 line(s) compiled
115) SFIOR=0x00; NG Errore
116 No warnings
117 whil 1
118 e :) Bitvariahles size: 0 byte(s)
119 delay ms (1000); Data Stack area: 60h to 15Fh
120 PORTA.1=1; Da@a Stack size: 256 byte(s)
121 delay ms(1000) ; Estimated Data Stack usage: 0 byte(s)
122 PORTA. 1=0; Global variables size: 0 byte(s) .
123 // Place your cg
124 Hardware Stack area: 160h to 45Fh
) Hardware Stack size: 768 byte(s) =
125 ;
1269 } Heap size: 0 byte(s)
12 EEPROM usage: 0 byte(s) (0.0% of EEPROM) -
= Program size: 150 words (1.8% of FLASH)
essages
v oK
LS J

» € ﬁ@m—s—j -) 1247PM

Hex File

* You can find the Hex file in Bin folder or the EXE folder
of the directory where You installed CVAVR

So we Have our Code ready

Feed this code to Atmega using Programmer (we will see this
in workshop)

Lets see the code in action

Lets add an Input

* Most Common Input [Button

* Since we have already made AO as Input
* We connect a button to that pin

* If button is pressed light the LED else turn it off
* First draw the Circuit Diagram

Circuit Diagram

—i @
o o
D1) o
LED-GREEN mlwl‘almlvlwlmle-l 8'%[‘8'8'5'3%'%9 QIQI cnI
=TEXT= - - i =
T e | M
3 - aactada ATMEGA1E
E‘ <TEXT>

1R1
| 100R
M <TEXT=

Never leave any Input pin unconnected / floating
at any point of time while your circuit is working

In Last Circuit AO is floating when button is not pressed
so our Circuit Diagram is wrong

What is the Voltage at theFloating PIN ?

Not 5V

Not OV

Ilts UNDEFINED

So never leave an input pin unconnected
Use the Concept of Pull up / Pull down

In Layman terms
PULL DOWN : Gives OV when unconnected
PULL UP : Gives 5V when unconnected

Connect the PIN to Ground through a resistance for pulling
down

Connect the PIN to 5V through a resistance for Pulling up

Correct Circuit Diagram

o

<TEXT=

| R1

100R

d <TEXT=

LE°-°RE“I UM I

| U1

ATMEGA1E
<TEXT=

|

R2

100R
<TEXT=

PIN Register

* It is a 8 bit register . It corresponds to the pin in same manner
as that of DDR Register

* It is used to read voltage at a pin

* To be used only after the pin has been set as input by DDR
register

Using Pin Register

inta; // Define the variable a to store the value of
voltage a=PINA.O; //read value at pin A.0 (make sure it is
input)

If (a==1) // if voltage is 5V

{

PORTA.1=1;// Light the LED

}

else

{
PORTA.1=0;// Turn off the LED

}

Code in Action

it Tools Design Graph Source Debug Library Template System Help

FH SR |B# ¢/ +RQAQRQY ||~ (st TTHR(Rre > ||[z2MZ DR DD @

!_°‘='\
L
& ATHEGA6
B e =
[R2
| 1ok
“TEXT>
=
= 7
= g

1) What is a Microprocessor?

In simple words, The microprocessor is useful in very
intensive processes. It only contains a CPU (central
processing unit) but there are many other parts needed to
work with the CPU to complete a process. These all other
parts are connected externally.

Microprocessors are not made for a specific task as well as
they are useful where tasks are complex and tricky like the
development of software, games, and other applications
that require high memory and where input and output are
not defined.

Do you understand? | think a bit, but it's ok, let’s
understand by some daily life examples

2) What is Microcontroller?

The microcontroller is designed for a specific task or to
perform the assigned task repeatedly. Once the program is
embedded on a microcontroller chip, it can’t be altered
easily and you may need some special tools to reburn it. As
per application, the process is fixed in microcontroller.
Hence, the output depends on the input given by the user
or sensors or predefined inputs.

The applications easily connect with concepts, so let's find
out day to day life examples

e.g. Calculator, Washing Machine, ATM machine, Robotic
Arm, Camera, Microwave oven, Oscilloscope, Digital
multimeter, ECG Machine, Printer so on and so forth.

Microprocessor consists of only a Central Processing Unit, whereas Micro Controller contains a CPU,

A) Household devigesryiptexih ated s\ ideme

computers, Video gaioeryotRH830AI 0TI M PERsonal Computers whereas Micro Controller is useful in an embedded

B) Transportation ald fi¥ustrial Devices: Aut%mo
trains, planes, Com / gy
etc.

(‘Srgm%zgssmgfﬁﬁeﬂ & megﬁl%ﬁgrface to RAM, ROM, and other peripherals, on the
er hand, Microc&ntroller uses an internal controlling bus.

Microprocessors are based on Von Neumann model Microcontrollers are based on Harvard

Did you notice! All thehiadmwe applications are complex and

they need to processahresprlicated dataplicated and expensive, with a large number of instructions to process but
Microcontroller is inexpensive and straightforward with fewer instructions to process.

LECTURE 15 APPLICATIONS

OF MICROPROCESSORS
MICROCONTROLLERS

Applications of
Microprocessors &
Microcontrollers

Dana Utebayeva

Outline

PC, LAPTOPS AND TOP MODELS OF MOBILE PHONES Al, MACHINE LEARNING AND DEEP
PROCESSORS LEARNING, COMPUTER VISION
PROJECTS

Best Processors of PCs and Laptops

Intel Core 19-9980XE Extreme Intel Core 19-7920X X-Series AMD YD297XAZAFWOF Ryzen
Editinn Draraccar Drnroccnr Throadrinnar

AMD Ryzen 5 3600 6-Core AMD Ryzen 5 2600

Mobile Processor

*°The mobile processor is used in mobile computers
and cell phones. The CPU IC is designed for laptop
computers to run without a fan, with a power
rating of less than 10-15W, which is cool enough

without a fan.

5 chips (in alphabetic
order)especially designed for Al

AMD Radeon Instinct Usage

. Rfdeon [nstinct is AMD’s brand
deep learning oriented GPUs.
It replaced AMD’s FirePro S
brand in 2016. Compared to the
Radeon brand of mainstream

consumer/gamer products, the
Radeon Instinct branded
products are intended to
accelerate deep leammﬁ
artificial neural network, and
high-performance
computing/GPGPU
applications.

Two performancs cores
Four high-efficiency cores

2nd-gen Apple-designed
parformancs controller

Apple-designed GPU
Apple-designed ISP
Apple-designed video encoder
Secure enclave

Apple A1l Bionic
Neural Engine

* The Apple A1l Bionic is a 64-bit ARM-based system on
a chip (SoC), designed by Apple Inc. and manufactured
by TSMC. It first appeared in the iPhone 8, iPhone 8
Plus, and iPhone X. The Al11 includes dedicated neural
network hardware that Apple calls a “Neural Engine”.
This neural network hardware can perform up to 600
billion operations per second and is used for Face ID,
Animoji and other machine learning tasks. The neural
engine allows Apple to implement neural network and
machine learning in a more energy-efficient manner
than using either the main CPU or the GPU.

Google Tensor Processing Unit

« A tensor processing l%mt (TPU) is
an ap, 1cat10n spec1 ic integrated
circuit (ASIC) developed by Google
Cpec1f1call for machine learnm%

ompared to a l%re(\iphlcs Brocess ng

unijt, 1t is es1 ed for a

volume o ow precision
computation (e. 1% as little as 8-bit
prec151on), Wit 1% er IOPS per
watt, and lacks hardware f or
rasterlsatlon texture mapping.

e chip has been specifically
iened for Google s TensoirFlow
ework wever Google still

uses CPUs and GPUs for ot

types of machine learnin g Other
AT accelerator designs ar
appearm% rom other vendors also
and are a med at embedded and
robotics markets.

I I I R I I R I T I R e R .
[] [] [] ‘. .

AR A AN -1\-A~s,.......

Huawei Kirin
PR eee LA S L R e i
A A AN L L .
AR A A R I SN ¢
AA A A SO e SRR S K "
AA A AN UL L R SR SRR R e L T
AR A A LU S S S ' . .

I
TEEER RERTRNEEN - .o
AA R AN AN NN v "y
R E N S N . . -
AR A AN L S N NN r e
AA A A A A * . e ’ '
AA R AN L N N N
AA A AN AN X . g
L S A8 AAS ...-l
A A A L U R . . o
A A A s A AN
A A 529 DS o r
TR R A N AN X X -
A A LN S S
A A A A .Y A A A .
. a A . . s

HUAWEI Kirin 97(

|IBM Powero

.........

« Recently launched by IBM,

Power9is a chip which has a
new systems archltecture
that 1s O]t'_)tlmlze
accelerators used in machme
learning. Intel makes Xeon
CPUs and Nervana
accelerators and NVIDIA
makes Tesla accelerators.
IBM’s Power9 is llt%rall y the
Swiss Army knife o
acceleratlon as it sup%)orts an
astronomlca amount of I0
bandwidth, 10X of
Xthmg that S out there

= count i known at this point). Total

computing is built pretty
muchd e a normal GPU. It has 32 GB of

2 stacks, all of which is
ed to 12 processing clusters
which'contain further cores (the exact

memory access speeds combine to a
whopping 8 terabits per second.

. Théf-\' rvan ‘We’%vork o
Proce sor’ém‘e) Mervana

.........

intel/ Nervana’

R T I—=ICIAL

Nvidia Tesla V100

 NVIDIA® Tesla® V100 is the
world’s most advanced data
center GPU ever built to
accelerate Al, HPC, and
%raphlcs. Powered by NVIDIA

olta™ the latest GPU

architecture, Tesla V100
offers the performance of
100 CPUs in a single
GPU—enabling data
scientists, researchers, and
engineers to tackle
challenges that were once
impossible.

