
LECTURE 1

Introduction to Digital Systems. Combinational
Circuits. Digital Integrated Circuits.

Lecture 1

Dana Utebayeva

Outline

• Basic concepts
• Simple gates

• Completeness

• Logic functions
• Expressing logic functions

• Equivalence

• Boolean algebra
• Boolean identities

• Logical equivalence

• Logic Circuit Design Process

• Deriving logical expressions
• Sum-of-products form

• Product-of-sums form

• Simplifying logical
expressions

• Algebraic manipulation

• Karnaugh map method

• Quine-McCluskey method

• Generalized gates

• Multiple outputs

• Implementation using other
gates (NAND and XOR)

Introduction

• Hardware consists of a few simple building blocks
• These are called logic gates

• AND, OR, NOT, …

• NAND, NOR, XOR, …

• Logic gates are built using transistors
• NOT gate can be implemented by a single transistor

• AND gate requires 3 transistors

• Transistors are the fundamental devices
• Pentium consists of 3 million transistors

• Compaq Alpha consists of 9 million transistors

• Now we can build chips with more than 100 million transistors

Basic Concepts

• Simple gates
• AND

• OR

• NOT

• Functionality can be expressed by a
truth table

• A truth table lists output for each possible
input combination

• Other methods
• Logic expressions

• Logic diagrams

Basic Concepts (cont’d)

• Additional useful gates
• NAND

• NOR

• XOR

• NAND = AND + NOT

• NOR = OR + NOT

• XOR implements exclusive-OR
function

• NAND and NOR gates require only 2
transistors

• AND and OR need 3 transistors!

Basic Concepts (cont’d)

• Number of functions
• With N logical variables, we can define

22N functions
• Some of them are useful

• AND, NAND, NOR, XOR, …
• Some are not useful:

• Output is always 1

• Output is always 0

• “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

• Complete sets
• A set of gates is complete

• if we can implement any logical function using only the type of gates in the set
• You can uses as many gates as you want

• Some example complete sets
• {AND, OR, NOT} Not a minimal complete set

• {AND, NOT}

• {OR, NOT}

• {NAND}

• {NOR}

• Minimal complete set
• A complete set with no redundant elements.

Basic Concepts (cont’d)

• Proving NAND gate is universal

Basic Concepts (cont’d)

• Proving NOR gate is universal

Logic Chips

• Basic building block:
• Transistor

• Three connection points
• Base

• Emitter

• Collector

• Transistor can operate
• Linear mode

• Used in amplifiers

• Switching mode
• Used to implement digital circuits

Logic Chips (cont’d)

NOT NAND NOR

Logic Chips (cont’d)

• Low voltage level: < 0.4V

• High voltage level: > 2.4V

• Positive logic:
• Low voltage represents 0

• High voltage represents 1

• Negative logic:
• High voltage represents 0

• Low voltage represents 1

• Propagation delay
• Delay from input to output

• Typical value: 5-10 ns

Logic Chips (cont’d)

Logic Chips (cont’d)

• Integration levels
• SSI (small scale integration)

• Introduced in late 1960s
• 1-10 gates (previous examples)

• MSI (medium scale integration)
• Introduced in late 1960s
• 10-100 gates

• LSI (large scale integration)
• Introduced in early 1970s
• 100-10,000 gates

• VLSI (very large scale integration)
• Introduced in late 1970s
• More than 10,000 gates

Logic Functions

• Logical functions can be expressed in several ways:
• Truth table
• Logical expressions
• Graphical form

• Example:
• Majority function

• Output is one whenever majority of inputs is 1

• We use 3-input majority function

Logic Functions (cont’d)

3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Logical expression form

F = A B + B C + A C

Logical Equivalence

• All three circuits implement F = A B function

Logical Equivalence (cont’d)

• Proving logical equivalence of two circuits
• Derive the logical expression for the output of each circuit
• Show that these two expressions are equivalent

• Two ways:
• You can use the truth table method

• For every combination of inputs, if both expressions yield the same output, they are
equivalent

• Good for logical expressions with small number of variables

• You can also use algebraic manipulation

• Need Boolean identities

Logical Equivalence (cont’d)

• Derivation of logical expression from a circuit
• Trace from the input to output

• Write down intermediate logical expressions along the path

Logical Equivalence (cont’d)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Thanks for your
attention

LECTURE 2

FUNDAMENTALS
 OF LOGICAL DESIGN

SIS 2
“Binary systems”

d.utebayeva@iitu.edu.kz

Dana Utebayeva

DECIMAL TO BINARY
CONVERSION

Convert Decimal Number to a
Binary Number:

Decimal

Binary 1110011100000

7392

QUIZ for SIS Project 1

Conversion of Decimal Number to a
Binary Number:

• Dana Zh. Utebayeva:
https://docs.google.com/forms/d/e/1FAIpQLSeKQMn0v_6GEpZ-ROuIxY7bV…

• опубликовано в 13507 Fundamentals of Logic Design (Утебаева Д..) 2021-2022/1 или
Общий в Tuesday, September 14, 2021 12:19:40 PM

•

FUNDAMENTALS
 OF LOGICAL DESIGN

Lecture 2
“Number systems and Codes”

d.utebayeva@iitu.edu.kz

Dana Utebayeva

• Goal of the lecture is to be familiar with number
systems and code in digital electronics.

Outline of Lecture

• Counting in Decimal and
Binary

• Place Value
• Binary to Decimal
Conversion

• Decimal to Binary
Conversion

• Electronic
Translators

• Hexadecimal
Numbers

• Octal Numbers

Number systems

Radix and subscript

COUNTING IN
DECIMAL AND BINARY

• Number System -
 Code using symbols that refer to
 a number of items.

• Decimal Number System -
 Uses ten symbols (base 10 system)

• Binary System -
 Uses two symbols (base 2 system)

Generalized approach of
Number systems

A number with a decimal point is
represented by series of

coefficients

PLACE VALUE

• Numeric value of symbols in different positions.

• Example - Place value in binary system:

Binary

8s 4s 2s 1s

Number

Place
Value

Yes Yes No No

1 0 01

RESULT: Binary 1100 = decimal 8 + 4 + 0 + 0 = decimal 12

 BINARY TO DECIMAL
CONVERSION

Convert Binary Number 110011
to a Decimal Number:

 32 + 16 + 0 + 0 + 2 + 1 = 51

1 1 0 0 1 1

Decimal

Binary

TEST

Convert the following binary
numbers into decimal numbers:

Binary 1001 = 9

Binary 1111 =

Binary 0010 =

15

2

DECIMAL TO BINARY
CONVERSION

Divide by 2 Process

Decimal # 13 ÷ 2 = 6 remainder 1

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

1 101

TEST

Convert the following decimal
numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17 =

1011

0100

10001

ELECTRONIC TRANSLATORS

Devices that convert from decimal to
binary numbers and from binary to

decimal numbers.

Encoders -
 translates from decimal to binary
Decoders -
 translates from binary to decimal

ELECTRONIC ENCODER -
DECIMAL TO BINARY

0

Decimal
to

Binary
Encoder

Binary output
Decimal input

0 0 0 0

5

0 1 0 1
7

0 1 1 1

3

0 0 1 1

● Encoders are available in IC form.
● This encoder translates from decimal input

to binary (BCD) output.

Binary-to-
7-Segment
Decoder/

Driver

ELECTRONIC DECODING:
BINARY TO DECIMAL

Binary input

0 0 0 0
Decimal output

0 0 0 10 0 1 00 0 1 10 1 0 0

● Electronic decoders are available in IC form.
● This decoder translates from binary to decimal.
● Decimals are shown on an 7-segment LED display.
● This decoder also drives the 7-segment display.

 Uses 16 symbols -Base 16 System
0-9, A, B, C, D, E, F

Decimal
1
9
10
15
16

Binary
0001
1001
1010
1111

10000

Hexadecimal
1
9
A
F
10

HEXADECIMAL NUMBER SYSTEM

●Hexadecimal to Binary Conversion
 Hexadecimal C 3

 Binary 1100 0011

Binary 1110 1010

Hexadecimal E A

●Binary to Hexadecimal Conversion

HEXADECIMAL AND
BINARY CONVERSIONS

DECIMAL TO HEXADECIMAL
CONVERSION

Divide by 16 Process

Decimal # 47 ÷ 16 = 2 remainder 15

2 ÷ 16 = 0 remainder 2

F2

HEXADECIMAL TO DECIMAL
CONVERSION

Convert hexadecimal number 2DB
to a decimal number

 512 + 208 + 11 = 731

2 D BHexadecimal

Decimal

Place

Value

256s 16s 1s

(256 x 2) (16 x 13) (1 x 11)

TEST

Convert Hexadecimal number A6 to Binary

Convert Hexadecimal number 16 to Decimal

Convert Decimal 63 to Hexadecimal

63 =

16 =

A6 = 1010 0110 (Binary)

22 (Decimal)

3F (Hexadecimal)

OCTAL NUMBERS

Uses 8 symbols -Base 8 System
0, 1, 2, 3, 4, 5, 6, 7

Decimal
1
6
7
8
9

Octal
1
6
7
10
11

Binary
001
110
111

001 000
001 001

PRACTICAL SUGGESTION ON
NUMBER SYSTEM CONVERSIONS

● Use a scientific calculator

● Most scientific calculators have DEC, BIN,
 OCT, and HEX modes and can either
 convert between codes or perform
 arithmetic in different number systems.

● Most scientific calculators also have other
 functions that are valuable in digital
 electronics such as AND, OR, NOT,
 XOR, and XNOR logic functions.

• 1) first page (Names, Title: “Binary systems”)

• 2) Outline (План)

• 3) Part I: (images from your “конспект”)

• 4) Part II: Upload/insert your screens from your
Quiz

• 5) Part: Assignments: screens from your copybook

• 6) About calculators

Deadline: Monday till 18.oo (20.09.2021)

SIS project 1

Attendance for Lecture 2

• Dana Zh. Utebayeva:
https://docs.google.com/forms/d/e/1FAIpQLSfotGeOUvqjykd78SYCT
_WEU…

• опубликовано в 13507 Fundamentals of Logic Design (Утебаева
Д..) 2021-2022/1 или Общий в Tuesday, September 14, 2021
1:46:25 PM

LECTURE 3-4

Outline
• Binary numbers

• Logic States

• Implementation
• The Buffer Logic Gate using

n-p-n transistors

• Logic Gates using transistors

• Logic functions
• Expressing logic functions

• Building block diagrams

• Boolean algebra
• Boolean algebra laws

• Logic Circuit Design Process

• Deriving logical expressions
• Sum-of-products form

• Product-of-sums form

• Generalized gates

• Multiple outputs

• Implementation using other
gates (NAND and XOR)

POS – product of sums

Logic Gates

• Simple gates
• AND

• OR

• NOT

• Functionality can be expressed by a
truth table

• A truth table lists output for each possible
input combination

• Other methods
• Logic expressions

• Logic diagrams

Basic Concepts (cont’d)

• Additional useful gates
• NAND

• NOR

• XOR

• NAND = AND + NOT

• NOR = OR + NOT

• XOR implements exclusive-OR
function

• NAND and NOR gates require only 2
transistors

• AND and OR need 3 transistors!

Basic Concepts (cont’d)

• Number of functions
• With N logical variables, we can define

22N functions
• Some of them are useful

• AND, NAND, NOR, XOR, …
• Some are not useful:

• Output is always 1

• Output is always 0

• “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

• Complete sets
• A set of gates is complete

• if we can implement any logical function using only the type of gates in the set
• You can uses as many gates as you want

• Some example complete sets
• {AND, OR, NOT} Not a minimal complete set

• {AND, NOT}

• {OR, NOT}

• {NAND}

• {NOR}

• Minimal complete set
• A complete set with no redundant elements.

Basic Concepts (cont’d)

• Proving NAND gate is universal

Basic Concepts (cont’d)

• Proving NOR gate is universal

Logic Chips

• Basic building block:
• Transistor

• Three connection points
• Base

• Emitter

• Collector

• Transistor can operate
• Linear mode

• Used in amplifiers

• Switching mode
• Used to implement digital circuits

Logic Chips (cont’d)

NOT NAND NOR

Logic Chips (cont’d)

• Low voltage level: < 0.4V

• High voltage level: > 2.4V

• Positive logic:
• Low voltage represents 0

• High voltage represents 1

• Negative logic:
• High voltage represents 0

• Low voltage represents 1

• Propagation delay
• Delay from input to output

• Typical value: 5-10 ns

Logic Chips (cont’d)

Logic Chips (cont’d)

• Integration levels
• SSI (small scale integration)

• Introduced in late 1960s
• 1-10 gates (previous examples)

• MSI (medium scale integration)
• Introduced in late 1960s
• 10-100 gates

• LSI (large scale integration)
• Introduced in early 1970s
• 100-10,000 gates

• VLSI (very large scale integration)
• Introduced in late 1970s
• More than 10,000 gates

Logic Functions

• Logical functions can be expressed in several ways:
• Truth table
• Logical expressions
• Graphical form

• Example:
• Majority function

• Output is one whenever majority of inputs is 1

• We use 3-input majority function

Logic Functions (cont’d)

3-input majority function

A B C F

0 0 0 0

0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• Logical expression form

F = A B + B C + A C

Logical Equivalence

• All three circuits implement F = A B function

Logical Equivalence (cont’d)

• Proving logical equivalence of two circuits
• Derive the logical expression for the output of each circuit
• Show that these two expressions are equivalent

• Two ways:
• You can use the truth table method

• For every combination of inputs, if both expressions yield the same output, they are
equivalent

• Good for logical expressions with small number of variables

• You can also use algebraic manipulation

• Need Boolean identities

Logical Equivalence (cont’d)

• Derivation of logical expression from a circuit
• Trace from the input to output

• Write down intermediate logical expressions along the path

Logical Equivalence (cont’d)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Thanks for your
attention

LECTURE 4

#3 Boolean Algebra and Digital Logic Gates.

#4 Combinational logic design. Completely and
Incompletely Specified Logic Functions. Design of a

combinational Circuits.

Lecture 3 - 4

Dana Utebayeva

Outline
• Binary numbers

• Logic States

• Implementation
• The Buffer Logic Gate using

n-p-n transistors

• Logic Gates using transistors

• Logic functions
• Expressing logic functions

• Building block diagrams

• Boolean algebra
• Boolean algebra laws

• Logic Circuit Design Process

• Deriving logical expressions
• Sum-of-products form

• Product-of-sums form

• Generalized gates

• Multiple outputs

• Implementation using other
gates (NAND and XOR)

Basic Concepts (cont’d)

• Number of functions
• With N logical variables, we can define

22N functions
• Some of them are useful

• AND, NAND, NOR, XOR, …
• Some are not useful:

• Output is always 1

• Output is always 0

• “Number of functions” definition is useful in proving completeness property

Basic Concepts (cont’d)

• Complete sets
• A set of gates is complete

• if we can implement any logical function using only the type of gates in the set
• You can uses as many gates as you want

• Some example complete sets
• {AND, OR, NOT} Not a minimal complete set

• {AND, NOT}

• {OR, NOT}

• {NAND}

• {NOR}

• Minimal complete set
• A complete set with no redundant elements.

Basic Concepts (cont’d)

• Proving NAND gate is universal

Basic Concepts (cont’d)

• Proving NOR gate is universal

Logic Chips

• Basic building block:
• Transistor

• Three connection points
• Base

• Emitter

• Collector

• Transistor can operate
• Linear mode

• Used in amplifiers

• Switching mode
• Used to implement digital circuits

Logic Chips (cont’d)

NOT NAND NOR

Logic Chips (cont’d)

• Low voltage level: < 0.4V

• High voltage level: > 2.4V

• Positive logic:
• Low voltage represents 0

• High voltage represents 1

• Negative logic:
• High voltage represents 0

• Low voltage represents 1

• Propagation delay
• Delay from input to output

• Typical value: 5-10 ns

Logic Chips (cont’d)

Logic Chips (cont’d)

• Integration levels
• SSI (small scale integration)

• Introduced in late 1960s
• 1-10 gates (previous examples)

• MSI (medium scale integration)
• Introduced in late 1960s
• 10-100 gates

• LSI (large scale integration)
• Introduced in early 1970s
• 100-10,000 gates

• VLSI (very large scale integration)
• Introduced in late 1970s
• More than 10,000 gates

Logic Functions

• Logical functions can be expressed in several ways:
• Truth table
• Logical expressions
• Graphical form

• Example:
• Majority function

• Output is one whenever majority of inputs is 1

• We use 3-input majority function

Logic Functions (cont’d)

3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Logical expression form

F = A B + B C + A C

Logical Equivalence

• All three circuits implement F = A B function

Logical Equivalence (cont’d)

• Proving logical equivalence of two circuits
• Derive the logical expression for the output of each circuit
• Show that these two expressions are equivalent

• Two ways:
• You can use the truth table method

• For every combination of inputs, if both expressions yield the same output, they are
equivalent

• Good for logical expressions with small number of variables

• You can also use algebraic manipulation

• Need Boolean identities

Logical Equivalence (cont’d)

• Derivation of logical expression from a circuit
• Trace from the input to output

• Write down intermediate logical expressions along the path

Logical Equivalence (cont’d)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Thanks for your
attention

LECTURE 5

«СРС»: SIS, Practice class and Lab class
assignments explanation

#5 Combinational and Sequential Circuit.
Adders. Subtractors. Comparators.

Lecture 5

Dana Utebayeva

Outline
• «СРС» SIS assignments

explanation
• Practice class

• Lab class

• SIS assignments explanation

• Boolean
Identities/Postulates/laws

• Expressing logic functions

• Building block diagrams

• Simplification Using
Boolean Identities

• Standard Representations
● Minterm
● Maxterm

• Combinational and
Sequential circuits

• Adders
• Comparators
• Full Subtractor

Boolean Identities / Postulates / laws
Boolean Laws

Problem 2
(a) Implementation of f= ABCD +
ABCD + BC(b) implementation of
the simplified function f= BC +
DImplementation of Boolean
function using logic gates

Simplification Using Boolean Identities

f= ABCD + ABCD + BC

Complement of a Boolean Function
(А + В + С)

Complement of a Boolean Function

f= C'(AB + A'B'D + A'BD')

f= C(AB + ABD + ABD)

Combinational and Sequential
circuits

Full Adder

Logic Diagram of Full Adder

Two-bit Comparator

Full Subtractor

Logic Chips (cont’d)

• Integration levels
• SSI (small scale integration)

• Introduced in late 1960s
• 1-10 gates (previous examples)

• MSI (medium scale integration)
• Introduced in late 1960s
• 10-100 gates

• LSI (large scale integration)
• Introduced in early 1970s
• 100-10,000 gates

• VLSI (very large scale integration)
• Introduced in late 1970s
• More than 10,000 gates

LECTURE 6

Multiplexer design
Procedure and applications

Lecture 6

Utebayeva dana

Truth table for MUX

Truth table for 4-to-1 MUX

LECTURE 7

Demultiplexers and their
Applications
Lecture 7, By dana Utebayeva

DEMUX DEMULTIPLEXER

MUX and DEMUX
applications

MUX and DEMUX applications

MUX and DEMUX applications

LECTURE 8 K-MAP K MAP
KMAP

Introduction to Karnaugh
map (k-map)
СРС (SIS) by Dana Utebayeva

LECTURE 9

Sequential Circuit.
Sequential logic

design. Flip-Flop.
Counters
Lecture 9
By Dana Utebayeva

Sequential Circuit. Sequential logic design. Flip-Flop. Counters

LATCHES FLIP-FLOPS WHAT IS THE CLOCK?

In Sequential Circuit, the Present Output depends on the Present Input as well as Past output / outputs

Cascaded NOT logic gate

The basic storage element is called latch

LECTURE 11-12

Lecture 10-11
MICROCOMPUTER ARCHITECTURE

Memory

ADC and DAC

152

• ADC and DAC

• 1.1 Basic Blocks of a Microcomputer

• 1.2 Typical Microcomputer Architecture

• 1.3 Single-Chip Microprocessor

• 1.4 Program Execution by Conventional Microprocessors

• 1.5 Program Execution by typical 32-bit Microprocessors

• 1.6 Scalar and Superscalar Microprocessors

• 1.7 RISC vs. CISC

Outline

153

ADC

154

ADC and DAC

155

Work use of ADC and DAC

Sound Waves Electrical Voltage Binary Data Electrical Voltage Sound Waves

Need Conversation

156

ADC in Multisim

157

DAC

158

DAC scheme DAC circuit

🡪 A microcomputer has three basic blocks: a central processing unit
(CPU), a memory unit,

 and an input/output (I/O) unit.

🡪 The CPU(microprocessor) executes all the instructions and performs
arithmetic and logic operations on data.

🡪 A memory unit stores both data and instructions. The memory
section typically

 contains ROM and RAM chips.

🡪 A system bus (comprised of several wires) connects these blocks.

2.1 Basic Blocks of a Microcomputer

159

2.1 Basic Blocks of a Microcomputer

160

System bus

• In a single-chip microcomputer, these three elements are on one chip,
whereas

• in a single-chip microprocessor, separate chips are required for
memory and I/O.

2.1 Basic Blocks of a Microcomputer

161

2.2 Typical Microcomputer Architecture

162

Simplified version of typical microprocessor

🡪 The microcomputer’s system bus contains three buses, address,
data, and control bus

🡪When a memory or an I/O chip receives data from the
microprocessor, it is called a WRITE operation, and data is written
into a selected memory location or an I/O port (register).

🡪 When a memory or an I/O chip sends data to the microprocessor, it
is called a READ operation, and data is read from a selected memory
location or an I/O port.

2.2.1 System Bus

163

🡪 The Address Bus

1. Unidirectional bus: Information transfer takes place in only one
direction, from the microprocessor to the memory or I/O elements.

2. Typically 20 to 32 bits long.

3. The size of the address bus determines the

 total number of memory addresses available

2.2.1 System Bus

For example : microprocessor with 32 address pins can
 generate 232 = 4,294,964,296 bytes

164

🡪 The data bus,

1. bidirectional bus: data can flow in both directions, that is, to or
from the microprocessor.

2. The size of the data bus varies from one microprocessor to
another.

2.2.1 System Bus

165

🡪 The control bus

1. consists of a number of signals that are used to synchronize
operation of the individual microcomputer elements.

166

2.2.1 System Bus

Is it Unidirectional or bidirectional bus ??

🡪 The system clock signals are contained in the control bus.

🡪 The number of cycles per second (hertz, abbreviated Hz) is referred to as the clock frequency.

• clock cycle = 1/f where f is the clock frequency.

• clock frequency determines the speed of the microcomputer.

167

2.2.2 Clock Signals

• The microprocessor is the CPU of the microcomputer

• The logic inside the microprocessor chip can be divided into three
main areas: the

 register section, the control unit, and the arithmetic-logic unit (ALU).

2.3 Single-Chip Microprocessor

168

• The number, size, and types of registers vary from one
microprocessor to another.

•Basic Microprocessor Registers There are four basic microprocessor
registers: instruction register, program counter, memory address
register, and accumulator.

2.3.1 Register Section

169

• Instruction register (IR) :

❑The instruction register stores instructions.

❑The word size of the microprocessor determines the size of the
instruction register. For example, a 32-bit microprocessor has a 32-bit
instruction register.

2.3.1 Register Section

170

•Program Counter (PC):

❑The program counter contains the address of the instruction or
operation code (op-code).

❑The program counter normally contains the address of the next
instruction to be executed.

❑The size of the program counter is determined by the size of the
address bus.

2.3.1 Register Section

171

How Program Counter is Work ?
1. Upon activating the microprocessor’s RESET input, the address of the first instruction to be

executed is loaded into the program counter.

2. To execute an instruction, the microprocessor typically places the contents of the program
counter on the address bus and reads (“fetches”) the contents of this address(i.e., instruction)
from memory

3. The program counter contents are incremented automatically by the microprocessor’s internal
logic. Microprocessor executes a program sequentially, unless the program contains an
instruction such as a JUMP instruction, which changes the sequence.

2.3.1 Register Section

172

•Memory Address Register (MAR).

The memory address register contains the address of data. The
microprocessor uses the address, which is stored in the memory
address register, as a direct pointer to memory. The contents of the
address is the actual data that is being transferred.

2.3.1 Register Section

173

•General Purpose Register (GPR). For an 8-bit microprocessor, the
general-purpose register is called the accumulator.

• It stores the result after most ALU operations.

• These 8-bit microprocessors have instructions to shift or rotate the
accumulator one bit to the right or left through the carry flag.

• In16- and 32-bit microprocessors the accumulator is replaced by a
GPR.

• any GPR can be used as an accumulator.

2.3.1 Register Section

174

•General Purpose Register (GPR).

The term general-purpose comes from the fact that these registers
can hold data, memory

 addresses, or the results of arithmetic or logic operations.

• Most registers are general-purpose, but some, such as the program
counter (PC),are provided for dedicated functions.

2.3.1 Register Section

175

•Other Microprocessor Registers such as general-purpose registers,
index register, status register and stack pointer register.

• general-purpose registers speeds up the execution of a program because the microprocessor does not have
to read data from external memory via the data bus if data is stored in one of its general-purpose registers.

• Index Register is typically used as a counter in address modification for an instruction or for general
storage functions. Used to access tables or arrays of data.

• Status Register(a processor status word register or condition code register, contains individual bits, with
each bit having special significance. The bits in the status register are called flags.

2.3.1 Register Section

176

• Flags Type

❖A carry flag is used to reflect whether or not the result
generated by an arithmetic operation is greater than
the microprocessor’s word size.

2.3.1 Register Section

177

Auxiliary carry flag

• Flags Type

❖A zero flag is used to show whether the result of an operation is zero.
It is set to1 if the result is zero, and it is reset to 0 if the result is
nonzero.

❖A parity flag is set to 1 to indicate whether the result of the last
operation contains either an even number of 1’s (even parity) or an
odd number of 1’s (odd parity), depending on the microprocessor.

2.3.1 Register Section

178

• Flags Type

❖A sign flag (sometimes called a negative flag) is used to indicate
whether the result of the last operation is positive(set to 0) or
negative(set to 1)

❖Overflow flag arises from representation of the sign flag by the most
significant bit of a word in signed binary operation. The overflow flag
is set to1 if the result of an arithmetic operation is too big for the
microprocessor’s maximum word size, otherwise it is reset to 0

2.3.1 Register Section

179

• EXAMPLE :

• Find the sign,carry,zero,overflow,and parity even flag for the following
arithmetic sign number:

(11110000)+(10100001) =10010001

 SF =1 ,CF=1 ,ZF=0 ,OF=0 ,PF=0

2.3.1 Register Section

180

• Stack Pointer Register A stack consists of a number of RAM locations
set aside for reading data from or writing data into these locations
and is typically used by subroutines

• Two instructions, PUSH and POP, are usually available with a stack.
The PUSH operation

 is defined as writing to the top or bottom of the stack, whereas the
POP operation means reading from the top or bottom of the stack.

2.3.1 Register Section

181

2.3.1 Register Section

182Push operation when accessing a stack from the bottom

2.3.1 Register Section

183

2.3.1 Register Section

184

2.3.1 Register Section

185

• The main purpose of the control unit is to read and decode
instructions from the program memory.

• To execute an instruction, the control unit steps through the
appropriate blocks of the ALU based on the op-codes contained in the
instruction register.

2.3.2 Control Unit

186

Control Signal Actions

•RESET. This input is common to all microprocessors. When this input
pin is driven HIGH or LOW (depending on the microprocessor), the
program counter is loaded with a predefined address specified by the
manufacturer.

2.3.2 Control Unit

187

Control Signal Actions

•READ/WRITE (R/W) This output line is common to all
microprocessors. The status of this line tells the other
microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal
on this line indicates a READ operation, and a LOW
indicates a WRITE operation.

2.3.2 Control Unit

188

Control Signal Actions

•READY, This is an input to a microprocessor. Slow devices (memory
and I/O) use this signal to gain extra time to transfer data to or
receive data from a microprocessor. The READY signal is usually an
active low signal; that is, LOW indicates that the microprocessor is
ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor
responds by suspending all its internal operations and enters a WAIT
state. When the device is ready to send or receive data, it removes
the READY signal. The microprocessor comes out of the WAIT state
and performs the appropriate operation.

2.3.2 Control Unit

189

Control Signal Actions

• Interrupt Request (INT or IRQ). The external I/O devices can
interrupt the microprocessor via this input pin on the microprocessor
chip. When this signal is activated by the external devices, the
microprocessor jumps to a special program called the interrupt service
routine. This program is normally written by the user for performing
tasks that the interrupting device wants the microprocessor to carry
out. After completing this program, the microprocessor returns to the
main program it was executing when the interrupt occurred.

2.3.2 Control Unit

190

• The ALU performs all the data manipulations, such as arithmetic and
logic operations, inside a microprocessor. The size of the ALU
conforms to the word length of the microcomputer.

• ALU Functions:

 1.Binary addition and logic operations

 2. Finding the one’s complement of data

 3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or
right through a carry

2.3.3 Arithmetic-Logic Unit

191

• Simple Microprocessor

2.3.4 Functional Representations of
Simple and Typical Microprocessors

192

• Buffer Register : Stores any data read from memory for further
processing by the ALU.

2.3.4 Functional Representations of
Simple and Typical Microprocessors

193

• Typical Microprocessor

2.3.4 Functional Representations of
Simple and Typical Microprocessors

194

195

• The Pentium contains two instruction pipelines: the U-pipe and the
V-pipe. The U-pipe can execute all integer and floating-point
instructions. The V-pipe can execute simple integer instructions

• The Pentium contains two separate cache memories: code cache and
data cache.

196

• The control unit performs two basic operations:

1. instruction interpretation

2. and instruction sequencing.

2.3.5 Simplified Explanation of Control
Unit design

197

• There are two methods for designing a control unit:

2.3.5 Simplified Explanation of Control
Unit design

198

hardwired control Microprogrammed control(firmware)

🡪clocked sequential circuit. 🡪ROM inside the control unit (control
memory)
🡪more expensive
🡪flexibility

• How incrementing the contents of the register by 1 is done in
microprogramming

 control ??

(see figures in next slides)

2.3.5 Simplified Explanation of Control
Unit design

199

2.3.5 Simplified Explanation of Control
Unit design

200

Transferring register
contents to a data bus

2.3.5 Simplified Explanation of Control
Unit design

201

2.3.5 Simplified Explanation of Control
Unit design

202

2.3.5 Simplified Explanation of Control
Unit design

203

2.3.5 Simplified Explanation of Control
Unit design

204

• The following three steps for completing the instruction:
1.Fetch. The microprocessor fetches (instruction read) the instruction from the main memory

(external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit. The
control unit inputs the contents of the instruction register, and then decodes (translates) the
instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To accomplish the
task, the control unit generates a number of enable signals required by the instruction.

2.4 Program Execution by Conventional
Microprocessors

205

• For example, suppose that it is desired to add the contents of two registers, X and
Y, and store the result in register Z. To accomplish this, a conventional
microprocessor performs the following steps:

1. The microprocessor fetches the instruction into the instruction register.

2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU sections to perform the
following:

 a. The CU transfers the contents of registers X and Y from the Register section into the ALU.

 b. The CU commands the ALU to ADD.

 c. The CU transfers the result from the ALU into register Z of the register section.

2.4 Program Execution by Conventional
Microprocessors

206

• Enhancement in 32-bit microprocessors (like Pentium) include : cache
memory, memory

 management, pipelining, floating-point arithmetic, and branch
prediction.

• Cache memory is a high-speed read/write memory implemented as
on-chip

 hardware in typical 32-bit microprocessors in order to increase
processing rates. This topic

 is covered in more detail in Chapter 3.

2.5 Program Execution by typical 32-bit
Microprocessors

207

•Memory management allows programmers to write programs much
larger than those that could fit in the main memory space available to
the microprocessors; the programs are simply stored on a secondary
device, such as a hard disk. This topic is covered in more detail in
Chapter 3.

208

2.5 Program Execution by typical 32-bit
Microprocessors

• Basic Concept

2.5.1 Pipelining

209

Hi is Hardware designed to perform activity Ai

2.5.1 Pipelining

210

• Two Kind of Pipelining:

Arithmetic operations and instruction execution.

2.5.1 Pipelining

211

•Arithmetic Pipelines

• Consider the process of adding two floating-point numbers x =0.9234
* 104 and y = 0.48 * 10 2.

First: exponents of x and y are unequal.

Second: exponent alignment.

Third: Perform the addition

Fourth: Normalize the final answer

2.5.1 Pipelining

212

• Pipelined floating-point
add/subtract unit

segment

213

• Instruction Pipelines

Instruction cycle typically involves the

 following activities:

• 1. Instruction fetch -🡪needs five clocks to complete

• 2. Instruction decode

• 3. Operand fetch (Data Read)

• 4. Operation execution

• 5. Result routing.

2.5.1 Pipelining

214

215

Five-segment
instruction pipeline

• Example of the execution of a stream of five instructions: 11,12,13,14,
and 15, in which I3 is a conditional branch instruction.

2.5.1 Pipelining

216

• This allows these microprocessors to anticipate jumps of the
instruction flow ahead of time.

2.5.2 Branch Prediction Feature

217

• To accomplish this, the Pentium includes on-chip
hardware called the Branch Unit (BU). The BU contains
the branch execution unit (BEU) and the branch
prediction unit (BPU). Whenever the Pentium
encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s
branch condition using the BEU and determines whether
the branch should or should not be taken. Once the BU
determines the branch condition, it calculates the
starting address (Branch target) of the next block of code
to be executed. The Pentium then starts fetching code at
the new address.

2.5.2 Branch Prediction Feature

218

• Scalar processors such as the 80486 can execute one instruction per
cycle.

 The 80486 contains only one pipeline.

• Superscalar microprocessors, can execute

 more than one instruction per cycle. These microprocessors contain
more than one pipeline.

• The Pentium, a superscalar microprocessor, contains two
independent pipelines. This

 allows the Pentium to execute two instructions per cycle.

2.6 Scalar and Superscalar Microprocessors

219

• There are two types of microprocessor architectures:
RISC and CISC.

• RISC stand for (reduced instruction set computer) and
CISC for (complex instruction set computer)

2.7 RISC vs. CISC

220

2.7 RISC vs. CISC

221

CISC RISC

large number of instructions
and many addressing modes

a simple instruction
set with a few addressing modes

slower clock rate fast clock rate

complex control unit,
thus requiring microprogrammed
implementation.

hardwired control Unit

more difficult to pipeline; more efficient pipelining.

complex programs require fewer
instructions in CISC

RISC requires a large number of
instructions to accomplish the same task

• Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro
and other succeeding members of the Pentium family and Motorola
68060 use a combination of RISC and CISC architectures for providing
high performance. The Pentium Pro and other succeeding

2.7 RISC vs. CISC

222

LECTURE 11-12

Lecture 10-11
MICROCOMPUTER ARCHITECTURE

Memory

ADC and DAC

224

• ADC and DAC

• 1.1 Basic Blocks of a Microcomputer

• 1.2 Typical Microcomputer Architecture

• 1.3 Single-Chip Microprocessor

• 1.4 Program Execution by Conventional Microprocessors

• 1.5 Program Execution by typical 32-bit Microprocessors

• 1.6 Scalar and Superscalar Microprocessors

• 1.7 RISC vs. CISC

Outline

225

• Flags Type

❖A zero flag is used to show whether the result of an operation is zero.
It is set to1 if the result is zero, and it is reset to 0 if the result is
nonzero.

❖A parity flag is set to 1 to indicate whether the result of the last
operation contains either an even number of 1’s (even parity) or an
odd number of 1’s (odd parity), depending on the microprocessor.

2.3.1 Register Section

226

• Flags Type

❖A sign flag (sometimes called a negative flag) is used to indicate
whether the result of the last operation is positive(set to 0) or
negative(set to 1)

❖Overflow flag arises from representation of the sign flag by the most
significant bit of a word in signed binary operation. The overflow flag
is set to1 if the result of an arithmetic operation is too big for the
microprocessor’s maximum word size, otherwise it is reset to 0

2.3.1 Register Section

227

• EXAMPLE :

• Find the sign,carry,zero,overflow,and parity even flag for the following
arithmetic sign number:

(11110000)+(10100001) =10010001

 SF =1 ,CF=1 ,ZF=0 ,OF=0 ,PF=0

2.3.1 Register Section

228

• Stack Pointer Register A stack consists of a number of RAM locations
set aside for reading data from or writing data into these locations
and is typically used by subroutines

• Two instructions, PUSH and POP, are usually available with a stack.
The PUSH operation

 is defined as writing to the top or bottom of the stack, whereas the
POP operation means reading from the top or bottom of the stack.

2.3.1 Register Section

229

2.3.1 Register Section

230

2.3.1 Register Section

231

2.3.1 Register Section

232

2.3.1 Register Section

233

• The main purpose of the control unit is to read and decode
instructions from the program memory.

• To execute an instruction, the control unit steps through the
appropriate blocks of the ALU based on the op-codes contained in the
instruction register.

2.3.2 Control Unit

234

Control Signal Actions

•RESET. This input is common to all microprocessors. When this input
pin is driven HIGH or LOW (depending on the microprocessor), the
program counter is loaded with a predefined address specified by the
manufacturer.

2.3.2 Control Unit

235

Control Signal Actions

•READ/WRITE (R/W) This output line is common to all
microprocessors. The status of this line tells the other
microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal
on this line indicates a READ operation, and a LOW
indicates a WRITE operation.

2.3.2 Control Unit

236

Control Signal Actions

•READY, This is an input to a microprocessor. Slow devices (memory
and I/O) use this signal to gain extra time to transfer data to or
receive data from a microprocessor. The READY signal is usually an
active low signal; that is, LOW indicates that the microprocessor is
ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor
responds by suspending all its internal operations and enters a WAIT
state. When the device is ready to send or receive data, it removes
the READY signal. The microprocessor comes out of the WAIT state
and performs the appropriate operation.

2.3.2 Control Unit

237

Control Signal Actions

• Interrupt Request (INT or IRQ). The external I/O devices can
interrupt the microprocessor via this input pin on the microprocessor
chip. When this signal is activated by the external devices, the
microprocessor jumps to a special program called the interrupt service
routine. This program is normally written by the user for performing
tasks that the interrupting device wants the microprocessor to carry
out. After completing this program, the microprocessor returns to the
main program it was executing when the interrupt occurred.

2.3.2 Control Unit

238

• The ALU performs all the data manipulations, such as arithmetic and
logic operations, inside a microprocessor. The size of the ALU
conforms to the word length of the microcomputer.

• ALU Functions:

 1.Binary addition and logic operations

 2. Finding the one’s complement of data

 3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or
right through a carry

2.3.3 Arithmetic-Logic Unit

239

• Simple Microprocessor

2.3.4 Functional Representations of
Simple and Typical Microprocessors

240

• Buffer Register : Stores any data read from memory for further
processing by the ALU.

2.3.4 Functional Representations of
Simple and Typical Microprocessors

241

• Typical Microprocessor

2.3.4 Functional Representations of
Simple and Typical Microprocessors

242

243

• The Pentium contains two instruction pipelines: the U-pipe and the
V-pipe. The U-pipe can execute all integer and floating-point
instructions. The V-pipe can execute simple integer instructions

• The Pentium contains two separate cache memories: code cache and
data cache.

244

• The control unit performs two basic operations:

1. instruction interpretation

2. and instruction sequencing.

2.3.5 Simplified Explanation of Control
Unit design

245

• There are two methods for designing a control unit:

2.3.5 Simplified Explanation of Control
Unit design

246

hardwired control Microprogrammed control(firmware)

🡪clocked sequential circuit. 🡪ROM inside the control unit (control
memory)
🡪more expensive
🡪flexibility

• How incrementing the contents of the register by 1 is done in
microprogramming

 control ??

(see figures in next slides)

2.3.5 Simplified Explanation of Control
Unit design

247

2.3.5 Simplified Explanation of Control
Unit design

248

2.3.5 Simplified Explanation of Control
Unit design

249

2.3.5 Simplified Explanation of Control
Unit design

250

2.3.5 Simplified Explanation of Control
Unit design

251

2.3.5 Simplified Explanation of Control
Unit design

252

• The following three steps for completing the instruction:
1.Fetch. The microprocessor fetches (instruction read) the instruction from the main memory

(external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit. The
control unit inputs the contents of the instruction register, and then decodes (translates) the
instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To accomplish the
task, the control unit generates a number of enable signals required by the instruction.

2.4 Program Execution by Conventional
Microprocessors

253

• For example, suppose that it is desired to add the contents of two registers, X and
Y, and store the result in register Z. To accomplish this, a conventional
microprocessor performs the following steps:

1. The microprocessor fetches the instruction into the instruction register.

2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU sections to perform the
following:

 a. The CU transfers the contents of registers X and Y from the Register section into the ALU.

 b. The CU commands the ALU to ADD.

 c. The CU transfers the result from the ALU into register Z of the register section.

2.4 Program Execution by Conventional
Microprocessors

254

• Enhancement in 32-bit microprocessors (like Pentium) include : cache
memory, memory

 management, pipelining, floating-point arithmetic, and branch
prediction.

• Cache memory is a high-speed read/write memory implemented as
on-chip

 hardware in typical 32-bit microprocessors in order to increase
processing rates. This topic

 is covered in more detail in Chapter 3.

2.5 Program Execution by typical 32-bit
Microprocessors

255

•Memory management allows programmers to write programs much
larger than those that could fit in the main memory space available to
the microprocessors; the programs are simply stored on a secondary
device, such as a hard disk. This topic is covered in more detail in
Chapter 3.

256

2.5 Program Execution by typical 32-bit
Microprocessors

• Basic Concept

2.5.1 Pipelining

257

Hi is Hardware designed to perform activity Ai

2.5.1 Pipelining

258

• Two Kind of Pipelining:

Arithmetic operations and instruction execution.

2.5.1 Pipelining

259

•Arithmetic Pipelines

• Consider the process of adding two floating-point numbers x =0.9234
* 104 and y = 0.48 * 10 2.

First: exponents of x and y are unequal.

Second: exponent alignment.

Third: Perform the addition

Fourth: Normalize the final answer

2.5.1 Pipelining

260

261

• Instruction Pipelines

Instruction cycle typically involves the

 following activities:

• 1. Instruction fetch -🡪needs five clocks to complete

• 2. Instruction decode

• 3. Operand fetch (Data Read)

• 4. Operation execution

• 5. Result routing.

2.5.1 Pipelining

262

263

• Example of the execution of a stream of five instructions: 11,12,13,14,
and 15, in which I3 is a conditional branch instruction.

2.5.1 Pipelining

264

• This allows these microprocessors to anticipate jumps of the
instruction flow ahead of time.

2.5.2 Branch Prediction Feature

265

• To accomplish this, the Pentium includes on-chip
hardware called the Branch Unit (BU). The BU contains
the branch execution unit (BEU) and the branch
prediction unit (BPU). Whenever the Pentium
encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s
branch condition using the BEU and determines whether
the branch should or should not be taken. Once the BU
determines the branch condition, it calculates the
starting address (Branch target) of the next block of code
to be executed. The Pentium then starts fetching code at
the new address.

2.5.2 Branch Prediction Feature

266

• Scalar processors such as the 80486 can execute one instruction per
cycle.

 The 80486 contains only one pipeline.

• Superscalar microprocessors, can execute

 more than one instruction per cycle. These microprocessors contain
more than one pipeline.

• The Pentium, a superscalar microprocessor, contains two
independent pipelines. This

 allows the Pentium to execute two instructions per cycle.

2.6 Scalar and Superscalar Microprocessors

267

• There are two types of microprocessor architectures:
RISC and CISC.

• RISC stand for (reduced instruction set computer) and
CISC for (complex instruction set computer)

2.7 RISC vs. CISC

268

2.7 RISC vs. CISC

269

CISC RISC

large number of instructions
and many addressing modes

a simple instruction
set with a few addressing modes

slower clock rate fast clock rate

complex control unit,
thus requiring microprogrammed
implementation.

hardwired control Unit

more difficult to pipeline; more efficient pipelining.

complex programs require fewer
instructions in CISC

RISC requires a large number of
instructions to accomplish the same task

• Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro
and other succeeding members of the Pentium family and Motorola
68060 use a combination of RISC and CISC architectures for providing
high performance. The Pentium Pro and other succeeding

2.7 RISC vs. CISC

270

LECTURE 12

• The Requirements of a memory chip
A memory chip requires address lines to identity a memory register.
The number of address lines required is determined by thenumber of registers in a
chip(2n = number of registers where n is the number of addresslines).A memory chip
requires a Chip Select (CS) signal to enablethe chip. The remaining address lines of
themicroprocessor can be connected to the CS signalthrough an interfacing logic.The
address lines connected to CS select the chip, and theaddress lines connected to the
address lines of the memorychip select the register.° The control signal Read (RD) enables
the output buffer,and data from the selected register are made available onthe output
lines.° The control signal (WR) enables the input buffer, and dataon the input lines are
written into memory cells.

• INPUT AND OUTPUT (I/O) DEVICES :

• Input/output devices are the means through which theMPU communicates with "the outside world.“

• There are two different methods by which I/O devices canbe identified.1. I/Os with 8-Bit Addresses
(Peripheral-Mapped I/O)

• The steps in communicating with an I/O deviceThe MPU places an 8-bit address on the address bus.which is decoded
by external decode logic.The MPU sends a control signal (I/O Read or I/O Write)and enables the I/O device.Data are
transferred using the data bus.2. I/Os with l6-Bit Addresses (Memory-Mapped I/O)the MPU uses 16 address lines to
identify an I/O device.This is known as memory-mapped I/O.

• • THE 8085 MPUoThe term microprocessing unit (MPU) is similar to
theterm central processing unit (CPU) used in
traditionalcomputers.MicroProcessing Unit (MPU)A device or a group of
devices (as a unit) that cancommunicate with peripherals, provide timing
signals,direct data flow, and perform computing tasks asspecified by the
instructions in memory.The 8085 microprocessor can almost qualify as an
MPUwith the following two limitations.1. The low-order address bus of the
8085 microprocessor ismultiplexed (time-shared) with the data bus. The
busesneed to be demultiplexed.2. Appropriate control signals need to be
generated tointerface memory and I/O with the 8085.

• • THE 8085 AND ITS PIN DESCRIPTION• The 8085 is an 8-bit general
purpose microprocessorthat can address 64K Byte of memory.• It
has 40 pins and uses +5V for power. It can run at amaximum
frequency of 3 MHz.• The pins on the chip can be grouped into 6
groups:Address Bus and Multiplexed Data Bus. (16 Pins)Control and
Status Signals. (6 Pins)Power supply and frequency. (4 Pins
)Externally Initiated Signals. (7 Pins)Interupt Signals. (5 pins)Serial
I/O ports. (2 Pins)

8085 Microprocessor Pin Out Diagram

• • Control and Status Signals :-o ALE-Address Latch Enable:This is a positive
going pulse generated every time the 8085begins an operation (machine
cycle): it indicates that thebits on AD7-AD, are address bits.This signal is
used primarily to latch the low-order addressfrom the multiplexed bus and
generate a separate set ofeight address lines. A7-A0-o RD-READ :This is a
Read control signal (active low).This signal indicates that the selected I/O
or memorydevice is to be read and data are available on the data
bus.WR-WRITE :This is a Write control signal (active low).This signal
indicates that the data on the data bus are tobe written into a selected
memory or I/O location.

• IO/M :This is a status signal used to differentiate between I/Oand
memory operations.When it is high it indicates an I/O operation;
when it islow, it indicates a memory operation.This signal is
combined with RD (Read) and WR (Write) togenerate I/O and
memory control signals.o S, & So :These status signals, similar to
IO/M.They can identify various operations, but they are rarelyused in
small systems

• • Interrupts :Processor has 5 interrupts. They are presented below
inthe order of their priority (from lowest to highest):INTR is maskable
interrupt. When the interrupt occursthe processor fetches
instruction from the bus.RST 5.5 is a maskable interrupt. When this
interrupt is… received the processor saves the contents of the PC
cregister into stack and branches to 2CH (hexadecimal)address.RST
6.5 is a maskable interrupt. When this interrupt isreceived the
processor saves the contents of the PCregister into stack and
branches to 34H (hexadecimal)address.

• RST 7.5 is a maskable interrupt. When this interrupt isreceived the
processor saves the contents of the PCregister into stack and
branches to 3CH (hexadecimal)address.TRAP is a non-maskable
interrupt. When this interruptis received the processor saves the
contents of the PCregister into stack and branches to 24H
(hexadecimal)address.All maskable interrupts can be enabled or
disabled usingEI and DI instructions.

• TIMING SIGNALS FOR FETCHING AN INSTRUCTIONAt T1 , the high order 8
address bits (20H) are placed on>the address lines A8 - A15 and the low
order bits areplaced on AD7-ADO.The ALE signal goes high to indicate that
AD0 - AD8 arecarrying an address.At exactly the same time, the IO/M
signal goes low toindicate a memory operation.At the beginning of the T2
cycle, the low order 8 addressbits are removed from AD7- ADO and the
controllersends the Read (RD) signal to the memory.The signal remains low
(active) for two clock periods toallow for slow devices.During T2 , memory
places the data from the memory>location on the lines AD7- AD0 .

• During T3 the RD signal is Disabled (goes high). This turnsoff the
output Tri-state buffers in the memory. That makesthe AD7- ADO
lines go to high impedence mode.The machine code or the byte
(4FH) is decoded by theinstruction decoder, and the contents of
theaccumulator are copied into register C. This task isperformed
during the period T4

• • DEMULTIPLEXING AD7-ADO• From the above description, it becomes
obvious thatthe AD7- ADO lines are serving a dual purpose andthat they
need to be demultiplexed to get all theinformation.• The high order bits of
the address remain on the busfor three clock periods. However, the low
order bitsremain for only one clock period and they would belost if they
are not saved externally.• Also, notice that the low order bits of the
addressdisappear when they are needed most.• To make sure we have the
entire address for the fullthree clock cycles, we will use an external latch
tosave the value of AD7- ADO when it is carrying theaddress bits. We use
the ALE signal to enable thislatch.

Demultiplexing AD7-AD0

• Given that ALE operates as a pulse during T1, wewill be able to latch
the address. Then when ALEgoes low, the address is saved and the
AD7- ADOlines can be used for their purpose as the bi-directional
data lines.

• • CYCLES AND STATES• From the above discussion, we can define
terms thatwill become handy later on:• T- State: One subdivision of
an operation. A T-statelasts for one clock period.• An instruction's
execution length is usuallymeasured in a number of T-states. (clock
cycles).• Machine Cycle: The time required to complete
oneoperationofaccessingmemory, I/O,oracknowledging an external
request.• This cycle may consist of 3 to 6 T-states.• Instruction Cycle:
The time required to complete theexecution of an instruction.• In
the 8085, an instruction cycle may consist of 1to 6 machine cycles.

• •GENERATING CONTROL SIGNALS•
The 8085 generates a single RD
signal. However, thesignal needs
to be used with both memory and
I/O. So,it must be combined with
the IO/M signal to
generatedifferent control signals
for the memory and I/O.• Keeping
in mind the operation of the IO/M
signal wecan use the following
circuitry to generate the right setof
signals:

• • THE 8085 MACHINE CYCLES• The 8085 executes several types of
instructions witheach requiring a different number of operations
ofdifferent types. However, the operations can begrouped into a
small set.• The three main types are:• Memory Read and Write.• I/O
Read and Write.• Request Acknowledge.• These can be further
divided into various operations(machine cycles).

• • OPCODE FETCH MACHINE CYCLE• The first step of executing any
instruction is theOpcode fetch cycle.• In this cycle, the
microprocessor brings in theinstruction's Opcode from memory.• To
differentiate this machine cycle from the verysimilar "memory read"
cycle, the control & statussignals are set as follows:• IO/M=0, s0 and
s1 are both 1.• This machine cycle has four T-states.• The 8085 uses
the first 3 T-states to fetch theopcode.• T4 is used to decode and
execute it.• It is also possible for an instruction to have 6 T-states in
an opcode fetch machine cycle.

• the memory read machine cycle• To understand the memory read
machine cycle, let'sstudy the execution of the following instruction:•
MVI A, 322000H3E• In memory, this instruction looks like:2001H32•
The first byte 3EH represents the opcode forloading a byte into the
accumulator (MVI A), thesecond byte is the data to be loaded.• The
8085 needs to read these two bytes from memorybefore it can
execute the instruction. Therefore, it willneed at least two machine
cycles.• The first machine cycle is the opcode fetchdiscussed earlier.•
The second machine cycle is the Memory ReadCycle.

• • MACHINE CYCLES VS. NUMBER OF BYTES INTHE INSTRUCTION• Machine
cycles and instruction length, do not have a directrelationship.• To
illustrate lets look at the machine cycles needed to executethe following
instruction.• STA 2065H• This is a 3-byte instruction requiring 4 machine
cycles and 13 T-states.32H 2010-• The machine code will be stored65H
2011Hin memory as shown to the right20H2012H• This instruction
requires the following 4 machine cycles:• Opcode fetch to fetch the
opcode (32H) from location 2010H,decode it and determine that 2 more
bytes are needed (4 T-states).• Memory read to read the low order byte of
the address (65H) (3T-states).•• Memory read to read the high order byte
of the address (20H) (3T-states).• A• A memory write to write the
contents of the accumulator intothe memory location.

LECTURE 13
MICROPROCESSORS

Microprocessors

• Input / OutputInput DevicesSwitches , Keyboard , …Output
Devices:Seven Segments (LEDs) , printer , Monitor ,…The processor
reads the instructions from thememory , data from the input
devices,processes them, produces the output

The CPU includes ALU, control Units, and Various Registers

The Von Neumann Model
It uses von Neumann execution cycle
(also called the fetch-decode-execute cycle)

• A cycle could be as follows:The control unit fetches the next
programinstruction from the memory, using the programcounter to
determine where the instruction islocated.The instruction is decoded
into a language theALU can understand.Any data operands required
to execute theinstruction are fetched from memory and placedinto
registers within the CPU.The ALU executes the instruction and places
theresults in registers or memory.

• Advances in SemiconductorTechnologyIC- Integrated Circuits -> few
transistors and diodes onone chipSSI -small scale Integration-> few
gates on one chipMSI- Medium scale Integration- 100 gates on a
chipLSI - Large Scale Integration - 1000 gates on a chipVLSI - Very
large scale IntegrationSLSI - Super Large Scale IntegrationBorders
between VLSI and SLSI are not strict.

Microprocessor programming
* Machine language
Instruction written in binary
format
• Assembly language
Text based format add a, b
• *High level language

Z80
instruction
s and
alphanum
eric codes

Microprocessor Based System

Microprocessor Unit
Progremmable logic unit with a designed set of instructions

MPU frequently communicates with the memory, I/O devices

What does it needs to do so..

What does it needs to do so…Group of logic circuitsSet of
signal to transfer informationControl signals for timingClock
circuits

Program-initiated operationsand BusesanMicroprocessor and
Memory OperationsMemory ReadReads instructions or data
from the memoryMemory WriteWrites instructions and data
into memoryI/O ReadAccepts data from input devicesI/O
WriteWrites data to output devices

Program-initiated operationsand BusesFrom where to read or
to write?We need an address! Right?How the input/output will
know about the operation?We need a control signal to tell
themMPU Operations Steps:Identify the addressSend
synchronization SIGNAL- control signal•Transfer the binary
dataSo, how many buses do we need?

BusesAddress BusIdentify the memorylocationsCPU(ALU,
Registers,and Control)MemoryInputandOutputData BusData
BusHolds the data duringAddress Bustransfer operationControl
BusControl Lines° For timing signal

BusesAddress Bus Size - bitsDepends on the number of memory
locations thatcan be accessedZ80 has 16 address lines to
address 216 locationsData Bus Size - bitsDepends on the data
to be transferredZ80 has 8 bits data busWhat is the maximum
memory size Z80 can use?

How the MPU Writes into the Memory?•MPU places the 16 bit
address on the address busMemory interfacing circuits will
decode address tospecify the target registerMPU Places a byte
on the data bus• MPU sends a control signal (Memory Write)
tothe memory to write

How the MPU reads from the Memory?MPU places the 16 bit
address on the address busMemory interfacing circuits will
decode address tospecify the target registerMPU sends a
control signal (Memory Read) tothe memory to enable the
output buffer•The memory puts the data on the data bus and
theprocessor will read it

LECTURE 13
MICROPROCESSOR

BusesAddress Bus Size - bitsDepends on the number of memory
locations thatcan be accessedZ80 has 16 address lines to
address 216 locationsData Bus Size - bitsDepends on the data
to be transferredZ80 has 8 bits data bus• What is the maximum
memory size Z80 can use?

Externally Initiated operationInterruptions categories :Reset - e.
g. timer to reset everything in the MPUInterrupt - stop
temporarily and do something , then come back.Wait: the
memory can not handle the MPU request , wait signalmust be
generated.Bus Request: sometimes the processor is too slow to
hand arequest that can be handled faster by another device.E.g
transfer large amount of data through the DMA could befaster
than using the MPU

LECTURE 14

Microcontrollers
Fundamentals of Logic Design

By Dana Utebayeva

Micro-Controller

• A single chip Computer (to some extent)
• Has CPU

1. RAM
2. EEPROM
3. I/O in form of pins
4. Peripherals (Timer , Communication modes ,

ADC etc)

Background

• Line Following Robots
• Wireless keyboards
• They were made using

Microcontrollers

• Suppose we want to make a Line following
Robot

• What do we do ?
• Use a computer with 2.4Ghz Intel core I7

with 4 Gb RAM , 500 Gb Hard disk , 1 Gb
Graphics Card ??

Why not a Computer ?

• PC is a general purpose computer.
• Can run thousand of softwares
• Microsoft ppt in which you are seeing this presentation
• Games (NFS , AOE , Call of Duty)
• Highly expensive

Why MCU

•Small reflected by the word “MICRO”
•Inexpensive
•Ideal for doing repetitive tasks
•Easy to use
•Highly Efficient and fast

Selecting a MCU

• Two family of MCU extremely popular
a) AVR
b) PIC

• We use AVR series of MCU from Atmel
• The instructions are fed once in the form of a Hex file

Tools Required -> CVAVR

Compiler -> CVAVR

• The code is written in C language so we need to convert it into
the format that Atmega understands

Transfer code to Atmega AVR Studio

Avr Programmer

• So we need two softwares overall
a) CVAVR –> Editor and Compiler
b) Avr Studio –> Transfer Code to Atmega

Atmega 16

Basics of C language

• If else block
• If(condition)

{
… …

}
else
{
… …
}

While& For

• While (conditon)
{
… ...
}

• for(initialisation; condition; increment)
{
… …

}

•Lets Begin by blinking
a simple LED

Circuit Diagram

Getting Started with CVAVR

Open
CVAVR

Go to
File

New Project

Open CVAVR

Go to File

Click on New

Select Project- > Click OK

Click YES

Select Chip

Introduction
to I/O

• Atmega has total of 40 pins out of which 32 pins can be
used as Input or Output

• These 32 pins are divided into 4 groups of 8
pins PORTA, PORTB , PORTC , PORTD

Data Direction register (DDR)

• This sets direction for all pins (32)
• Direction for these pins can be Input or Output
• To blink an LED we need to set pin as “OUTPUT” but “HOW“ ?

• DDRA = 0b00000001 ;
• DDRA = 0x01 ;
• 1 Stands for Output & 0 stands for Input

What is Next ?

• We have set the Pin as Output

• What else do we need to light the LED ??

• Supply of 5 Volts !!! This is given by PORT Register

PORT Register
• Only after you have set the Pin to Output you can

control them through this Register
• It is a 8 bit register . It corresponds to the pin in same manner

as that of DDR Register
• Used to set output value (0 or 1) only if the

corresponding Pin has been set as output by DDR Register
• PORTA= 0b 00000001;

or
• PORTA= 0x01 ;
• 1 stands for 5V
• 0 stands for 0V

L L L L L L L HMSB LSB

Simple Questions

• DDRA= 0b 00101100
• DDRD = 0xf4
• DDRC = 0b 01111110
• DDRB = 0x3b

Assume all 32 pins set as output

• PORTA = 0b00001100;
• PORTD = 0b11110000;
• PORTB.4=1;
• PORTC.2=1;

Setting I/O

Go to Ports

• Click on In to make that pin Output
• Can do so for all four ports

Click on File

Generate Save and Exit

Enter name (3 times)

Where is the code stored ?

Then Click Save

Name of Project & Location

Writing the Code

• NOTE : We write our code in While block
• While (1)

{
PORTA.1=1; // sets the Pin to 5 volts
PORTA.1=0; // sets the Pin to 0 volts
}

• This makes the LED to blink but we cannot see blinking !!!

• This is because Atmega runs at a frequency of 8000000
Hz

• We need to introduce delay so as to see blinking
• Use header file delay.h

•Function to be used 🡪 delay_ms(time in millis);
While (1)
{
delay_ms(1000);
PORTA.1=1;
delay_ms(1000);
PORTA.1=0;
}

How to compile

• Code is written in C language but Atmega
understands Hex file
so we need to convert the C file to Hex file

Compiling

Make the Project

Check for errors

Hex File
• You can find the Hex file in Bin folder or the EXE folder

of the directory where You installed CVAVR

• So we Have our Code ready
• Feed this code to Atmega using Programmer (we will see this

in workshop)
• Lets see the code in action

Lets add an Input
• Most Common Input 🡪 Button

• Since we have already made A0 as Input
• We connect a button to that pin
• If button is pressed light the LED else turn it off
• First draw the Circuit Diagram

Circuit Diagram

• Never leave any Input pin unconnected / floating
at any point of time while your circuit is working

• In Last Circuit A0 is floating when button is not pressed
so our Circuit Diagram is wrong

• What is the Voltage at theFloating PIN ?

• Not 5 V
• Not 0V
• Its UNDEFINED
• So never leave an input pin unconnected
• Use the Concept of Pull up / Pull down

• In Layman terms
• PULL DOWN : Gives 0V when unconnected
• PULL UP : Gives 5V when unconnected

• Connect the PIN to Ground through a resistance for pulling
down

• Connect the PIN to 5V through a resistance for Pulling up

Correct Circuit Diagram

PIN Register
• It is a 8 bit register . It corresponds to the pin in same manner

as that of DDR Register
• It is used to read voltage at a pin
• To be used only after the pin has been set as input by DDR

register

Using Pin Register
int a; // Define the variable a to store the value of
voltage a=PINA.0; // read value at pin A.0 (make sure it is
input)

If (a==1) // if voltage is 5V
{
PORTA.1=1; // Light the LED
}
else
{
PORTA.1=0; // Turn off the LED
}

Code in Action

🡪 Microprocessor consists of only a Central Processing Unit, whereas Micro Controller contains a CPU,
Memory, I/O all integrated into one chip.
The microprocessor is useful in Personal Computers whereas Micro Controller is useful in an embedded
system.
The microprocessor uses an external bus to interface to RAM, ROM, and other peripherals, on the
other hand, Microcontroller uses an internal controlling bus.
Microprocessors are based on Von Neumann model Microcontrollers are based on Harvard
architecture
The microprocessor is complicated and expensive, with a large number of instructions to process but
Microcontroller is inexpensive and straightforward with fewer instructions to process.

1) What is a Microprocessor?

• In simple words, The microprocessor is useful in very
intensive processes. It only contains a CPU (central
processing unit) but there are many other parts needed to
work with the CPU to complete a process. These all other
parts are connected externally.

• Microprocessors are not made for a specific task as well as
they are useful where tasks are complex and tricky like the
development of software, games, and other applications
that require high memory and where input and output are
not defined.

• Do you understand? I think a bit, but it's ok, let’s
understand by some daily life examples

• A) Household devices: Complex home security, Home
computers, Video game systems and many more.

• B) Transportation and Industrial Devices: Automobiles,
trains, planes, Computer servers, high tech medical devices,
etc.

• Did you notice! All the above applications are complex and
they need to process all complicated data.

• 2) What is Microcontroller?

• The microcontroller is designed for a specific task or to
perform the assigned task repeatedly. Once the program is
embedded on a microcontroller chip, it can’t be altered
easily and you may need some special tools to reburn it. As
per application, the process is fixed in microcontroller.
Hence, the output depends on the input given by the user
or sensors or predefined inputs.

• The applications easily connect with concepts, so let's find
out day to day life examples

• e.g. Calculator, Washing Machine, ATM machine, Robotic
Arm, Camera, Microwave oven, Oscilloscope, Digital
multimeter, ECG Machine, Printer so on and so forth.

LECTURE 15 APPLICATIONS
OF MICROPROCESSORS
MICROCONTROLLERS

Applications of
Microprocessors &
Microcontrollers

Dana Utebayeva

Outline

PC, LAPTOPS AND TOP MODELS OF
PROCESSORS

MOBILE PHONES AI, MACHINE LEARNING AND DEEP
LEARNING, COMPUTER VISION

PROJECTS

Best Processors of PCs and Laptops

Mobile Processor

•The mobile processor is used in mobile computers
and cell phones. The CPU IC is designed for laptop
computers to run without a fan, with a power
rating of less than 10-15W, which is cool enough
without a fan.

5 chips (in alphabetic
order)especially designed for AI
AMD Radeon Instinct Usage

• Radeon Instinct is AMD’s brand
of deep learning oriented GPUs.
It replaced AMD’s FirePro S
brand in 2016. Compared to the
Radeon brand of mainstream
consumer/gamer products, the
Radeon Instinct branded
products are intended to
accelerate deep learning,
artificial neural network, and
high-performance
computing/GPGPU
applications.

Apple A11 Bionic
Neural Engine
• The Apple A11 Bionic is a 64-bit ARM-based system on

a chip (SoC), designed by Apple Inc. and manufactured
by TSMC. It first appeared in the iPhone 8, iPhone 8
Plus, and iPhone X. The A11 includes dedicated neural
network hardware that Apple calls a “Neural Engine”.
This neural network hardware can perform up to 600
billion operations per second and is used for Face ID,
Animoji and other machine learning tasks. The neural
engine allows Apple to implement neural network and
machine learning in a more energy-efficient manner
than using either the main CPU or the GPU.

Google Tensor Processing Unit

• A tensor processing unit (TPU) is
an application-specific integrated
circuit (ASIC) developed by Google
specifically for machine learning.
Compared to a graphics processing
unit, it is designed for a high
volume of low precision
computation (e.g. as little as 8-bit
precision) with higher IOPS per
watt, and lacks hardware for
rasterisation/texture mapping.
The chip has been specifically
designed for Google’s TensorFlow
framework. However, Google still
uses CPUs and GPUs for other
types of machine learning. Other
AI accelerator designs are
appearing from other vendors also
and are aimed at embedded and
robotics markets.

Huawei Kirin
970

• Kirin 970 is powered by an 8-core CPU
and a new generation 12-core GPU. Built
using a 10nm advanced process, the
chipset packs 5.5 billion transistors into
an area of only one cm². HUAWEI’s
flagship Kirin 970 is HUAWEI’s first mobile
AI computing platform featuring a
dedicated Neural Processing Unit (NPU).
Compared to a quad-core Cortex-A73
CPU cluster, the Kirin 970’s
heterogeneous computing architecture
delivers up to 25x the performance with
50x greater efficiency.

IBM Power9
• Recently launched by IBM,

Power9 is a chip which has a
new systems architecture
that is optimized for
accelerators used in machine
learning. Intel makes Xeon
CPUs and Nervana
accelerators and NVIDIA
makes Tesla accelerators.
IBM’s Power9 is literally the
Swiss Army knife of ML
acceleration as it supports an
astronomical amount of IO
and bandwidth, 10X of
anything that’s out there
today

Intel Nervana
• The Nervana ‘Neural Network

Processor’ uses a parallel, clustered
computing approach and is built pretty
much like a normal GPU. It has 32 GB of
HBM2 memory dedicated in 4 different
8 GB HBM2 stacks, all of which is
connected to 12 processing clusters
which contain further cores (the exact
count is unknown at this point). Total
memory access speeds combine to a
whopping 8 terabits per second.

Nvidia Tesla V100
• NVIDIA® Tesla® V100 is the

world’s most advanced data
center GPU ever built to
accelerate AI, HPC, and
graphics. Powered by NVIDIA
Volta™, the latest GPU
architecture, Tesla V100
offers the performance of
100 CPUs in a single
GPU—enabling data
scientists, researchers, and
engineers to tackle
challenges that were once
impossible.

