# Разложение вектора по трем некомпланарным векторам



# Цели урока

• Рассмотреть теорему о разложении вектора по трем некомпланарным векторам.

# Новый материал

Теорема о разложении вектора по трем некомпланарным векторам.

Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом.

Дано: 
$$\vec{a}$$
,  $\vec{b}$ ,  $c$  – некомпланарны  $\vec{p}$ 
 $\vec{p}$ 

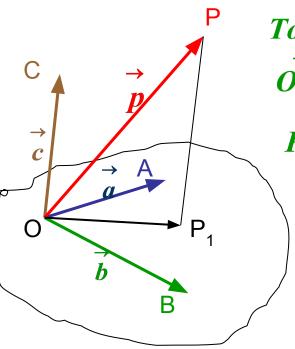
Доказать:  $\vec{1}$ )  $\vec{p} = x \vec{a} + y \vec{b} + z \vec{c}$ ,

 $\vec{2}$ ) коэффициенты  $x$ ,  $y$ ,  $z$  определяются единственным образом.

#### Доказательство

1)Отложим векторы а, b, c и р от одной точки.

Через точку P, проведем  $PP_1 \parallel OC, P_1 \in (AOB)$ .



Tогда по правилу треугольника  $OP = OP_1 + P_1P$ .

 $OP_1 = x a + y b$ , т.к.  $OP_1$ , a u b - компланарны.

$$\overrightarrow{P_1P} = \overrightarrow{z} \overrightarrow{c}, m.\kappa. \overrightarrow{P_1P} \parallel \overrightarrow{c}.$$

Следовательно, p = x a + y b + z c.

 $Ecnu\overrightarrow{p} \parallel \overrightarrow{c}$ , то  $p = 0 \cdot \overrightarrow{a} + 0 \cdot \overrightarrow{b} + z \cdot \overrightarrow{c}$ .

## Доказательство

Докажем единственность коэффициентов разложения.

$$\Pi y cmb \stackrel{\rightarrow}{p} = x \stackrel{\rightarrow}{a} + y \stackrel{\rightarrow}{b} + z \stackrel{\rightarrow}{c} u \stackrel{\rightarrow}{p} = x_1 \stackrel{\rightarrow}{a} + y_1 \stackrel{\rightarrow}{b} + z_1 \stackrel{\rightarrow}{c},$$

следовательно, 
$$x\stackrel{\rightarrow}{a}+y\stackrel{\rightarrow}{b}+z\stackrel{\rightarrow}{c}=x_1\stackrel{\rightarrow}{a}+y_1\stackrel{\rightarrow}{b}+z_1\stackrel{\rightarrow}{c}$$
.

$$(x-x_1)\vec{a}+(y-y_1)\vec{b}+(z-z_1)\vec{c}=0$$

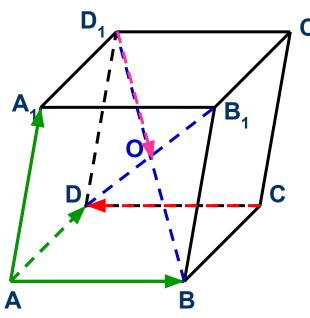
Пусть  $x - x_1 \neq 0$ . Делим на  $x - x_1$  обе части равенства:

$$\vec{a} + \frac{y - y_1}{x - x_1} \vec{b} + \frac{z - z_1}{x - x_1} \vec{c} = 0 \qquad Omky \partial \vec{a} \vec{a} = -\frac{y - y_1}{x - x_1} \vec{b} - \frac{z - z_1}{x - x_1} \vec{c};$$

 $m.e.\ a,b\ u\ c- компланарны,\ что противоречит условию,$  значит,  $x=x_1,\ y=y_1,\ z=z_1,\ ч.m. \partial.$ 

#### Решение задач





$$\overrightarrow{CD} = -\overrightarrow{AB} = 0 \cdot \overrightarrow{AA_1} - \overrightarrow{AB} + 0 \cdot \overrightarrow{AD};$$

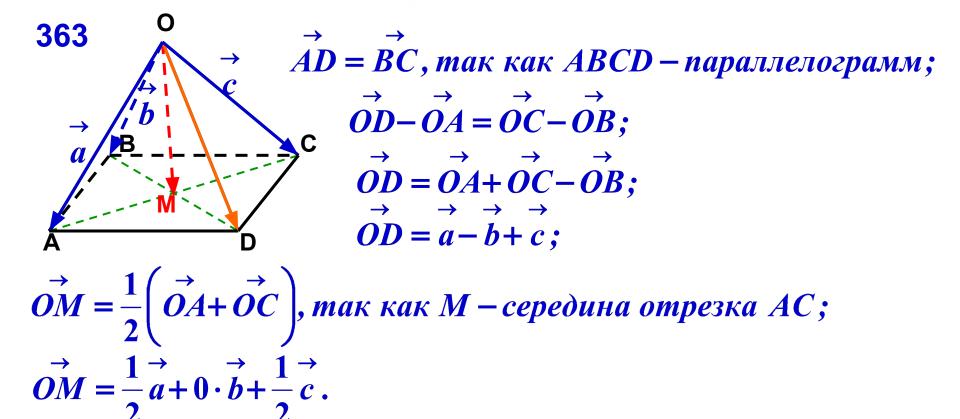
$$\overrightarrow{D_1O} = \frac{1}{2} \overrightarrow{D_1B} = \frac{1}{2} \left( \overrightarrow{D_1A_1} + \overrightarrow{D_1C_1} + \overrightarrow{D_1D} \right) =$$

$$=\frac{1}{2}\left(\overrightarrow{-AD}+\overrightarrow{AB}-\overrightarrow{AA}_{1}\right)=$$

$$= -\frac{1}{2} \stackrel{\rightarrow}{AA}_1 + \frac{1}{2} \stackrel{\rightarrow}{AB} - \frac{1}{2} \stackrel{\rightarrow}{AD}.$$

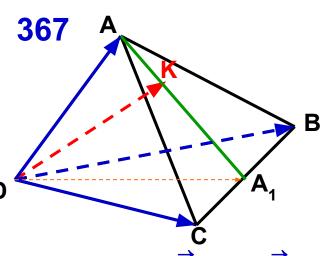
Ответ:

### Решение задач



Ответ:

## Решение задач



Дано: ABCD – тетраэдр

 $AA_1$  – медиана грани ABC,

$$K \in AA_1$$
,  $\frac{AK}{KA_1} = \frac{3}{7}$ .

Разложить: вектор DK по векторам DA, DB, DC.

Pemenue: 
$$7\overrightarrow{AK} = 3\overrightarrow{KA}_1$$
;  $7\left(\overrightarrow{DK} - \overrightarrow{DA}\right) = 3\left(\overrightarrow{DA}_1 - \overrightarrow{DK}\right)$ ;

$$10 \, DK = 7 \, DA + 3 \, DA_1;$$
 $DA_1 = \frac{1}{2} \begin{pmatrix} \overrightarrow{DB} + \overrightarrow{DC} \end{pmatrix},$  мак как  $A_1 -$  середина отрезка  $BC;$ 
 $A_1 = \frac{1}{2} \begin{pmatrix} \overrightarrow{DB} + \overrightarrow{DC} \end{pmatrix}$ 

$$10 \vec{DK} = 7 \vec{DA} + 3 \cdot \frac{1}{2} \left( \vec{DB} + \vec{DC} \right); \quad \vec{DK} = 0,7 \vec{DA} + \frac{3}{20} \vec{DB} + \frac{3}{20} \vec{DC};$$

Omeem: 
$$\vec{DK} = 0.7 \vec{DA} + \frac{3}{20} \vec{DB} + \frac{3}{20} \vec{DC};$$

