

ХИМИЯ 9 класс 5я группа элементов

Мария Дмитриевна Смирнова Smirnova@sch2101.ru

Vk com/macha 2101

Селен и Теллур

Химия селена и теллура схожа с химией серы.

- Селеноводород, H₂Se
- Оксид селена(IV) SeO₂
- Селенистая кислота, H₂SeO₃
- Оксид селена(VI) SeO₃
- Селеновая кислота, H₂SeO₄

- Теллуроводород ТеН,
- Оксид теллура (IV) ТеО,
- Теллуристая кислота Н₂ТеО₃
- Оксид теллура (VI) ТеО₃
- Ортотеллуровая кислота H₆TeO₆

Селен и Теллур

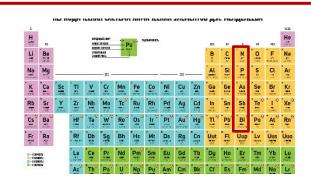
Химия селена и теллура схожа с химией серы.

- Селеноводород, H₂Se
- Оксид селена(IV) SeO₂
- Селенистая кислота, H₂SeO₃
- Оксид селена(VI) SeO₃
- Селеновая кислота, H₂SeO₄

- Теллуроводород ТеН,
- Оксид теллура (IV) ТеО₂
- Теллуристая кислота H₂TeO₃
- Оксид теллура (VI) ТеО₃
- Ортотеллуровая кислота H_6 TeO $_6$

Окончание –истая – самая низкая степень окисления Окончания –ная, -овая, -евая для наивысших степеней окисления. Окончание –водород если кислота бескислородная.

5я группа элементов



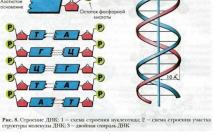
6я группа главная подгруппа содержит элементы:

Азот и фосфор — типичные неметаллы, мышьяк и сурьма проявляют металлические свойства, висмут — типичный металл.

N P As Sb

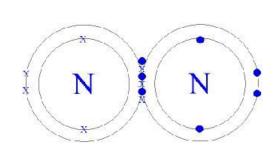
Bi

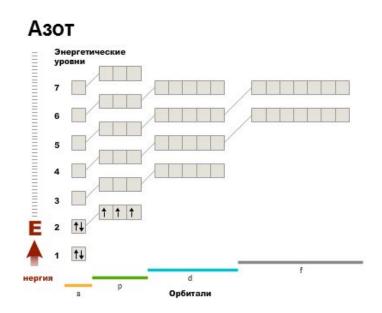
Азот – основной компонент воздуха (78% об.). Это газ без цвета и запаха, состоящий из двухатомных молекул N_2 .


			ПЕРИОД	ЧЕСКАЯ	я систе	МА ЭЛЕ	МЕНТОВ	VII	VIII		
1	1	H 1 0.01	Д.И. МЕНДЕЛЕЕВА					(H)	400 ² He	атомный обозначение номер элемента	
		водород	II	III	IV	V	VI		PERMA	6 C	
2	2	Li 3	Ве 4 эл Берриллий	5 B 50P	6 С 12,01 УГЛЕРОД	7 N 14,01 A3OT	8 О кислород	9 F ФТОР	20,18 10 Ne	12,01 УГЛЕРОД	
3	3	Na 11 22.49	Mg 12 24,31	13 Al Алюминий	28,09 14 Si КРЕМНИЙ	30,97 P ФОСФОР	16 S CEPA	35,45 ¹⁷ Cl	39,95 18 Ar APFOH	относительная атомная масса	
	4	K 19 KAHMU 39.10	Са ²⁰ 40,08	Sc ²¹ 44,96 Скандий	Ti 22 THTAH 47,96	V 23 50,94 ВАНАДИЙ	Cr 24 XPOM 52,00	Mn ²⁵ 54,94 МАРГАНЕЦ	Fe 26 ЖЕЛЕЗО 55,85	Со ²⁷ _{58,93} Ni ²⁸ _{58,70} кобальт никель	
4	5	²⁹ Си _{63,55} медь	30 Zn 65,38 цинк	_{69,72} ³¹ Ga	72,59 32 Ge	^{74,92} ³³ As мышьяк	78,96 34 Se	79,90 35 Br	83,80 ³⁶ Кг		
_	6	Rb 37 85.47	Sr 38 _{ят,52}	Y 39 88,91	Zr 40 91,22 цирконий	Nb ⁴¹ _{92,91}	Mo ⁴² _{95,84} молибден	Те 43 98,91 технеций	Ru ⁴⁴ 101,07 РУТЕНИЙ	Rh 45 102.91 Pd 46 108.42 ПАЛЛАДИЙ	
5	7	47 Ag	⁴⁸ Сd кадмий	⁴⁹ In индий	⁵⁰ Sn олово	⁵¹ Sb сурьма	_{127,60} 52 Те теллур	53 I 126,90 иод	131,30 54 Xe		
	8	Cs 55	Ва 56 137.33	La *57 лантан	Hf ⁷² гафний ^{178,49}	Та ⁷³ 180,95	W 74 183,85 ВОЛЬФРАМ	Re 75 РЕНИЙ 186,21	Os ⁷⁶ 190,20 осмий	Ir 77 192,22 Pt 78 195,09 ПЛАТИНА	
6	9	_{196,97} ⁷⁹ Au золото	80 Н g	81 Т 1 204,37 ТАЛЛИЙ	⁸² Рb	83 Bi висмут	[209] 84 Ро	85 At ACTAT	[222] ⁸⁶ Rn	— s - элементы — р - элементы	
7	10	Fr 87 (223)	Ra 88	Ас **89 [227] АКТИНИЙ	Ku ¹⁰⁴ [261] КУРЧАТОВИЙ	Ns 105 [261] нильсьорий	Sg 106 [263]	Bh 107 [262] 50РИЙ	Hs 108 [265] ХАССИЙ	H s 109 [266]	
					100 - *	ЛАНТАН	оиды				
58 Се 1- церий		59 Pr 140,91 празеодим		61 m [145] Sm 15 ометий самарий		64 6 Gd 157,25 Th	65 0 158,93 Бий Диспрози	67 НО 164,93 гольмий	68 Er 167,26 Tn		
		o ru			*:	* АКТИН	ноиды				
90 Th 2:		32,04 Pa 231,04		93 р 237,05 ПТУНИЙ ПЛУТОНИ		96 Ст [247] ВІ кюрий БЕР	97	99 Es [254] ний эйнштейний		101 102 103 1 [258] (No) [255] (Lr) [256 пелевий новелий лоуренсий	

Азот является важным элементом белков.

Растения синтезируют белки, используя нитраты из почвы.


Например, нуклеотиды: Аденин (A), Гуанин (G), Тимин (T), Цитозин (C)

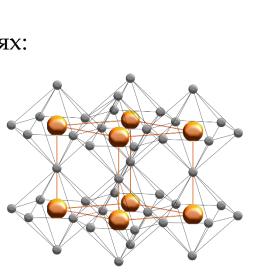


Азот может иметь степени окисления от -3 до +5.

Что бы N_2 вступил в реакцию нужна активация («кинетический пинок») – температура, эклектический разряд и т.д.

 $N_2 + O_2 <-> 2NO - Q$

С Н₂, только при нагревании. Процесс Гибера: $p=200 \ am M$


Только в «жестких» условиях реагирует с O2:

$$N_{2(\Gamma)} + 3H_{2(\Gamma)} \rightleftharpoons 2NH_{3(\Gamma)} + 91,84$$
 кДж $_{400^{\circ}C,\ Fe}$

Из металлов азот реагирует только с Li при обычных условиях:

 $6\text{Li} + \text{N}_2 = 2\text{Li}_3\text{N} + 39 \text{ кДж}$

С остальными только при нагревании.

Нитриды легко взаимодействуют с водой: $Ca_3N_2 + 6H_2O = 3Ca(OH)_2 + 2NH_3$

И с кислотами:

 $AlN + 4HCl = AlCl_3 + NH_4Cl$

Нитрид Алюминия - материал для высокотеплопроводной керамики — подложки для производства высокочастотных

резисторов, корпуса электронных схем.