Способы получения веществ 14 (IVA) группы элементов

Получение углерода

Сухая перегонка древесины, каменного угля, древесный уголь, кокс, активированный уголь.

• Самый чистый углерод – сажа:

CH4 → C + 2H2 при 1000o С

 Неполное сжигание метана и др. углеводородов:

CH4+O2=C+2H2O

Получение оксида углерода (IV)

В лаборатории оксид углерода (IV) получают взаимодействием карбоната кальция (мел, мрамор) с соляной кислотой в аппаратах Киппа:

$$CaCO_3 + 2HCI = CaCl_2 + H_2O + CO_2$$

В промышленности этот оксид получают сжиганием угля и при обжиге известняка:

$$C + O_2 = CO_2$$

 $CaCO_3 = CaO + CO_2$

Получение СО

В лаборатории оксид углерода (IV) получают взаимодействием карбоната кальция (мел, мрамор) с соляной кислотой в аппаратах Киппа:

В промышленности этот оксид получают сжиганием угля и при обжиге известняка:

$$C + O_2 = CO_2$$

 $CaCO_3 = CaO + CO_2$

При растворении мрамора (CaCO₄) в растворе HCI выделяется газообразный оксид углерода IV. Это лабораторный способ получения углекислого газа.

Методы получения кремния

✓ В промышленности кремний получают восстановлением кремнезема SiO₂ коксом в электрических печах при 1500-1700°C:

$$SiO_2 + 2C \rightarrow Si + 2CO$$

✓ В лаборатории:

SiO₂ + 2Mg → Si + 2MgO

3SiO₂ + 4Al → 3Si + 2Al₂O₃

✓ Чистый кремний получают:

 $SiCl_4 + 2Zn \uparrow \rightarrow Si + ZnCl_2$

Получение кремния

 В лабораториях кремний получают, восстанавливая оксид кремния SiO₂ магнием.

В промышленности получают в электрических печах, коксом восстанавливая SiO₂ или разложением силана.

$$SiO_2 + 2C = 2CO + Si (1900^{\circ})$$

 $Si^{+4} + 4e^{-} = Si^{\circ} \pi p$. Red; Ox
 $C^{\circ} - 2e^{-} = C^{-2} \pi p$. Ox; Red
 $SiH_4 = Si + 2H_2 (400^{\circ})$
 $Si^{-4} - 4e^{-} = Si^{\circ} \pi p$. Ox; Red
 $2H^{+1} + 1e^{-} = 2H^{\circ} \pi p$. Red; Ox

Олово

Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Олово образует две аллотропические модификации: ниже 13,2 °C устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше 13,2 °C устойчиво β-олово (белое олово) с тетрагональной кристаллической решеткой.

СВИНЕЦ

Простое вещество свинец — ковкий, сравнительно легкоплавкий металл серебристо-белого цвета с синеватым отливом. Известен с глубокой древности.

Современное использование олова

На сегодня основная часть выплавляемого олова используется в металлургии в виде сплавов.

• Олово в виде фольги - станиоль, используется для изготовления труб для органа.

Оксид олова (II) SnO - абразив для шлифовки оптических стекол.

SnC12 - оловянная соль используется для окраски текстиля.

ПОЛУЧЕНИЕ СВИНЦА

- Обжиг руды 2PbS + 3O2f 2PbO + 2SO₂
- Восстановление свинца
 PbO + C f Pb + CO
- Очистка от примесей электролизом.

Темп. пл. 327ºС

Получение свинца

 Свинец обладает массой важных для промышленности достоинств. Наиболее очевидное из них сравнительная легкость его получения из руд, которая объясняется низкой температурой плавления (всего 327°C)

