

Твердые сплавы. Маркировка. Примеры. Области применения.

ПОДГОТОВИЛ: МУХТАРОВ ANTHHEK [PYNNA: MX-301 ДЛЯ: МУСИНА Ж.К

ПЛАН

- 1. Введение;
- 2. Из истории;
- 3. Твердые сплавы;
- 4. Маркировка сплавов;
- 5. Примеры сплавов;
- 6. Области применения;

Введение

Твердые сплавы, материалы с высокой твердостью, прочностью, режущими и др. свойствами, сохраняющимися при нагреве до высоких температур.

Из истории...

Применение методов порошковой металлургии в начале 1920-х годов в Германии привело к созданию новых материалов, обладающих уникальным сочетанием свойств, – твердых сплавов. Внимание исследователей привлекли соединения некоторых металлов с углеродом: карбиды вольфрама, титана, тантала, ниобия, обладающие высокими твердостью и температурой плавления.

Твердые сплавы

Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900-1150°С. Твердые сплавы известны человеку уже около 100 лет. В основном изготовляются на основе карбидов вольфрама, титана, тантала, хрома при различном содержании кобальта или никеля.

Твёрдосплавные пластинки для режущего инструмента.

Спечённые твердые сплавы

Твердые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам

готовых пластин, при температуре

атмосфере.

Волоки из спеченных твердых сплавов.

Литые твердые сплавы

Литые твёрдые сплавы получают методом плавки и литья.

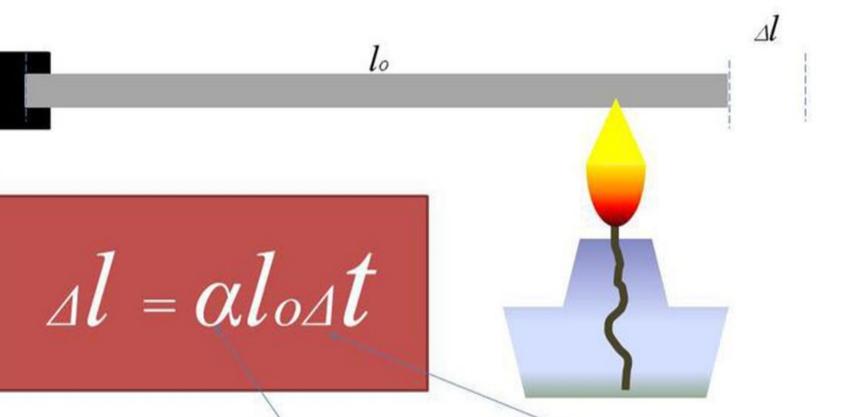
Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих

свойств при температуре на

Литой карбид вольфрама (рэлит).

Номенклатура твердых сплавов

- □ Вольфрамосодержащие твердые сплавы.(BK)
- □ Титановольфрамосодержащие твердые сплавы.(ТК)
- □ Титанотанталовольфрамовые твердые сплавы.(ТТК)
- ☐ Безвольфрамовые твердые сплавы.(БВТС)


Физические свойства

- Плотность. Плотность сплавов зависит от химического состава сплавов (с увеличением содержания Со и титана уменьшается). Плотность снижается при наличии в конкретном сплаве остаточной пористости, свободного графита.
- □ Теплопроводность. Твердые сплавы работают в условиях трения. В результате образуется тепло, которое при хорошей теплопроводности отводится от места контакта с обрабатываемым материалом.

коэффициент линейного расширения

Коэффициент линейного расширения. характеризует удлинение при нагреве. тела Коэффициент расширения. линейного характеризует удлинение при нагреве. тела Коэффициент расширения линейного твердых от химического состава сплава. С сплавов зависит увеличением содержания кобальта коэффициент линейного расширения увеличивается.

Тепловое расширение тел

Изменение температуры

Коэффициент линейного расширения

Термические свойства и красностойкость

- Термические свойства твердых сплавов играют большую роль при изготовлении и эксплуатации инструмента. Твердые сплавы чувствительны к условиям нагрева и охлаждения, а они всегда имеют место при пайке пластин твердого сплава к инструменту, при шлифовании и заточке изделий.
- Красностойкость свойство твердого сплава сохранять твердость, износостойкость и другие качества, необходимые для резания. Красностойкость важна для резания стали, т.к. сливная стружка трется о твердосплавную пластину и разогревает ее.

Механические

свойства

Твердость- одно из главных свойств твердых сплавов, т.к. от нее зависит износостойкость.. Главное влияние на нее оказывает количество карбидной фазы и величина зерна этой фазы. С увеличение количества карбидной фазы или уменьшением величины зерна

Диск пилы с твёрдосплавными вставками на основе карбида вольфрама.

Предел прочности при изгибе.

Прочность твердых сплавов - одно из основных свойств.

Предел прочности находится в обратной зависимости от твердости и увеличивается с увеличением содержания кобальта, проходя через максимум 15-20%. Зависит и от величины зерна карбидной фазы. Максимум зависит от содержания кобальта.


Испытания предела прочности на статическом изгибе (Победит).

Применение в деревообработке

На сегодняшний день твердые сплавы постепенно заменяют стали в конструкциях большинства дереворежущих инструментов по причине уникального сочетания твердости, прочности и теплостойкости при вполне приемлемых ценах. Твердые сплавы

применяются в составном и сборнс

Фрезы деревообрабатывающи е.

Недостатки твердого сплава

Основным недостатком твердых сплавов является их большая хрупкость, которая уменьшается при увеличении содержания кобальта. Например, сплав Т15К6 более хрупкий, чем Т5К10. В связи с этим сплавы с большим содержанием кобальта применяются при черновой обработке. Низкокобальтовые сплавы используются при чистовой обработке; они обладают большей теплостойкостью и, следовательно, допускател ую

скорость резания.

Материал пластинок: BK8, T5K10.

МЕТАЛЛОКЕРАМИЧЕСК ИЕ ТВЕРДЫЕ СПЛАВЫ

- изготовляемые методом порошковой металлургии сплавы тугоплавких соединений (главным образом карбидов вольфрама, титана) с металлами железной группы. Структура металлокерамических твердых сплавов состоит из зерен карбида или твердого раствора карбидов и цементирующей фазы, представляющей собой т та железной группы.

Победит - металлокерамический композитный твёрдый сплав.

"Победит"

Победит — твёрдый сплав карбида вольфрама и кобальта в массовом соотношении 90:10. Обладая высокой твёрдостью, применяется при бурении горных пород, металлообработке, деревообработке и в качестве ответственных деталей, для которых

тробиотся в изменения тропрочность.

Дисковая пила с победитовыми напайками для раскроя древесных материалов на круглопильных станках.

Металлокерами

Ka

Металлокерамика – один из видов протезирования, появление которого произвело переворот в стоматологии. Анализ врачебной деятельности любого стоматолога-ортопеда наглядно демонстрирует преобладание металлокерамических

Металлокерамик а на зубы.

Недостатки металлокерамики

- при обточке зуба под металлокерамику приходится жертвовать его тканями.
- ❖ твердость большинства сортов керамики больше твердости зуба, поэтому собственные зубы, расположенные на противоположной челюсти, могут сильно износиться от контакта с фарфоровой поверхностью металлокерамической коронки.
- фарфоровое покрытие коронок может ломаться и скалываться.
- металлический каркас под фарфоровой поверхностью иногда может выступать в виде темной линии у самого края

Литература

- 1. Конструкционные материалы. Под ред, Б.Н. Арзамасова. Москва, изд «Машиностроение», 1990.
- 2. Технология конструкционных материалов. Под ред. А.М. Дальского. Москва, изд «Машиностроение», 1985.
- 3. Технология и свойства спеченных твердых сплавов и изделий из них Панов В.С., Чувилин А.М. МИСИО, 2001
- 4. Термодинамика сплавов. Вагнер К. Москва, 1957
- 5. Производство и литье сплавов цветных металлов. Юдкин В.С. М., 1967–1971
- 6. Диаграммы фаз в сплавах. М., 1986 Коротич В.И., Братчиков С.Г. Металлургия черных металлов. М., 1987

