
1. Спрямление профиля.

В соответствии с вариантом профиля по заданию из таблицы Приложения 2 методических указаний выбираем элементы профиля обозначенные * и **. Предполагаем, что кривая расположена по оси симметрии элемента. Разбиваем каждый элемент на три:

1. Спрямление профиля.

Параметры новых элементов рассчитываем по формулам:

$$i_{3J} = i_2 = i$$
 ; $i = \frac{k}{3J} + i$, %0.

 $i_{_{9Л}}$ – исходный уклон элемента профиля, ‰. Принимается из Приложения 2 методических указаний;

 $R_{\rm кp}$ — радиус кривой, м. Принимается из Приложения 2 методических указаний;

$$k=700$$
, если $R_{\mathrm{kp}} \geq 300$; или $k=430$, если $R_{\mathrm{kp}} < 300$

$$S_{ ext{kp}} = S_3 = rac{S_{ ext{эл}} - S_{ ext{кp}}}{2}$$
 $ext{м} S_2 = S$,

 $S_{\text{эл}}$ — исходная длина элемента профиля, м. Принимается из Приложения 2 методических указаний;

 $S_{\rm kp}$ — длина кривой, м. Принимается из Приложения 2 методических указаний.

1. Спрямление профиля.

Результа	ты спряг	мления п	рофиля с	ікимдофс	отся в ви	1ДЕ
таблицы	I:					
V	Ісходный	Спрямленный профил				
№ п/п	$S_{_{\mathfrak{I}\!\!\!\!\!\!\mathcal{I}\!$	i _{эл} , ‰	$S_{_{\mathfrak{I}\!$	№ п/п	$S_{_{\mathfrak{I}\!\!\!\!\!\mathrm{J}}},\mathrm{M}$	$i_{\scriptscriptstyle \mathrm{ЭЛ}}, i_{\scriptscriptstyle \mathrm{I}}$
1				1		

 ΣS Определяются расчетные уклоны в режиме тяги и рекуперативного торможения:

Рассчитываем номинальную скорость движения

электровоза:
$$V_{\rm H} = \frac{{\rm Ry6} \cdot \pi \cdot n_{\rm H} \cdot D_{\rm K}}{{\rm 60} \cdot \mu}, \; ---.$$

- $n_{_{
 m H}}$ номинальная частота вращения тягового электродвигателя, об/мин;
- $D_{\rm K}$ диаметр движущего колеса электровоза, м; μ передаточное число редуктора электровоза.

Рассчитываем сопротивление обмоток тягового электродвигателя: $R_{_{\rm J}}=R_{_{\rm S}}+R_{_{\rm J\Pi}}+R_{_{\rm KO}}+R_{_{\rm FII}},$ Ом.

 $R_{_{\rm g}}$ — сопротивление обмотки якоря, Ом;

 $R_{_{\mathrm{Д\Pi}}}$ — сопротивление обмотки дополнительных полюсов, Oм;

 $R_{\rm ko}$ — сопротивление компенсационной обмотки, Ом;

 $R_{_{\Gamma\Pi}}$ — сопротивление обмотки главных полюсов, Ом.

Рассчитываем номинальный магнитный поток тягового

электродвигателя:
$$C\Phi_{\rm H} = \frac{U_{\rm дH} - I_{\rm дH} \cdot R_{\rm д}}{V_{\rm H}}, \frac{{\rm B} \cdot {\rm q}}{{\rm км}}.$$

 $U_{\rm дн}$ — номинальное напряжение тягового электродвигателя, B;

 $I_{_{\mathrm{ДH}}}$ — номинальный ток тягового электродвигателя, А.

Рассчитываем магнитный поток тягового электродвигателя, соответствующий расчетному току:

$$C\Phi_{K} = \frac{C\Phi_{H}}{1 \text{ left}} \cdot \arctan\left(2,6 \cdot \frac{I_{B}}{I_{BH}}\right), \frac{B \cdot \Psi}{I_{BH}}.$$

 $I_{_{
m B}}$ — ток возбуждения тягового электродвигателя, соответствующий расчетному току, А. $I_{_{
m B}}=I_{_{
m S}};$ $I_{_{
m BH}}$ — номинальный ток возбуждения тягового электродвигателя, А. $I_{_{
m BH}}=I_{_{
m ZH}}.$

Величина расчетного тока $I_{_{\mathrm{H}}}$ принимается по заданию.

Рассчитываем коэффициент, учитывающий механические и магнитные потери в тяговом электродвигателе и механические потери в тяговой передаче:

$$k_{\Pi} = \eta_{\Pi} \cdot \frac{1 + \eta_{\Pi}}{2}.$$

$$\begin{split} &\eta_{_{T\Pi}} - K\Pi \text{Д тяговой передачи;} \\ &\eta_{_{TД}} - K\Pi \text{Д тягового электродвигателя.} \end{split}$$

Вычисляем расчетную силу тяги электровоза:

$$F_{\rm kp} = 0.367 \cdot g \cdot C\Phi_{\rm K} \cdot I_{\rm g} \cdot k_{\rm m} \cdot 4 \cdot N_{\rm c}, \, \text{H.}$$

g — ускорение свободного падения. g = 9,81 м/с²; $N_{\rm c}$ — число секций электровоза. Принимается по заданию.

Вычисляем расчетную скорость движения электровоза:

$$V_{\rm p} = \frac{U_{\rm KC} - I_{\rm g} \cdot 2 \cdot R_{\rm d}}{\Phi C_{\rm K}}, \quad \frac{\rm KM}{\rm H}$$

 $U_{\rm кc}$ — напряжение контактной сети, В. Принимается по заданию.

Вычисляем расчетный коэффициент сцепления колес электровоза с рельсами:

$$\Psi_{K} = 0.28 + \frac{3}{50 + 20 \cdot V_{p}} - 0.0007 \cdot V_{p}.$$

Вычисляем расчетную массу электровоза: $G = G_2 \cdot \frac{N_c}{2}$ т.

 G_2 — масса двухсекционного электровоза, т. Принимается по Приложению 1 методических указаний.

Вычисляем расчетную силу тяги электровоза по условиям сцепления колес с рельсами: $F_{\rm cu} = 1000 \cdot G \cdot g \cdot \Psi_{\rm K}$, H.

Окончательно принимаем расчетную силу тяги электровоза по следующему условию:

если
$$F_{\rm cu} < F_{\rm kp} \Rightarrow F_{\rm kp} = F_{\rm cu}$$
, H.

Вычисляем сопротивление движению электровоза в расчетном режиме:

$$w_{\rm p}' = 1,9 + 0,01_{\rm p} \cdot V + 0,0003 \cdot V^2, \frac{H}{\kappa H}.$$

Вычисляем сопротивление движению каждого типа вагонов в расчетном режиме:

$$w''_{\text{oi}} = a_i + \frac{b_i + c_i \cdot V_p + d_i \cdot V_p^2}{q_{\text{o}i}}, \frac{H}{\kappa H}.$$

 a_i, b_i, c_i, d_i — коэффициенты, величина которых зависит от типа вагона. Принимается по Таблице1 методических указаний;

 q_{oi} – нагрузка на ось вагона i-го типа, т. Принимается по заданию.

Вычисляем массу вагона каждого типа: $Q_i = q_{oi} \cdot N_{oi}$, т. N_{oi} — число осей вагона i-го типа . Принимается по заданию.

Вычисляем массовую долю каждого типа вагонов:

$$\beta_i = \frac{\alpha_i \cdot Q_i}{\sum_{i=1}^{3} \alpha_i \cdot Q_i}.$$

 α_i — процентная доля вагонов i-го типа. Принимается по заданию.

Делаем проверку правильности вычислений:

$$\left|1-\sum_{i=1}^{3}\beta_{i}\right|\leq0,01.$$

Вычисляем сопротивление движению состава в расчетном режиме: H

$$w_{o}'' = \sum_{i=1}^{3} w_{oi}'' \cdot \beta_{i}, \frac{H}{\kappa H}.$$

Вычисляем расчетную массу состава:

$$Q_{p} = \frac{F_{Kp} - G \cdot g \cdot (w'_{o} + i_{p})}{(w''_{o} + i_{p}) \cdot g} T.$$

Полученный результат округляем до целого!

3. Проверка массы состава по условиям трогания с места.

Вычисляем сопротивление движению состава при трогании с места: 3 / рр

$$w_{\text{Tp}} = \sum_{i=1}^{3} \left(\frac{28}{q_{\text{o}i} + RH} \cdot \beta_{i} \right), \quad --$$

Вычисляем массу состава по условиям трогания с места на расчетном подъеме: F

$$Q_{\rm Tp} = \frac{F_{\rm Kp}}{(w_{\rm Tp} + i_{\rm p}) \cdot g} - G_{\rm T}.$$

Полученный результат округляем до целого!

Делаем проверку: если
$$Q_{\rm Tp} < Q_{\rm p} \Rightarrow Q = Q_{\rm Tp}$$
, иначе $Q = Q_{\rm p}$, т.

4. Проверка массы состава по длине приемоотправочных путей.

Рассчитываем число вагонов каждого типа: $N_i = \frac{Q \cdot \beta_i}{Q_i}$

Полученные результаты округляются до меньшего целого.

Рассчитываем массу состава через число вагонов:

$$Q_{\rm B} = \sum_{i=1}^{3} (Q_i \cdot N_i).$$

Делаем проверку: если $Q - Q_{\rm B} > Q_{i \, \rm min}$, то увеличиваем число вагонов каждого типа на 1 до тех пор, пока условие выполняется. Не допускается $Q - Q_{\rm B} < 0$!

 $Q_{i \min}$ — наименьшая масса вагона, т.

4. Проверка массы состава по длине приемоотправочных путей.

Рассчитываем длину поезда:
$$L_{\Pi} = L_2 \cdot \frac{N_c}{2} + \sum_{i=1}^3 L_i \cdot N_i$$
 м.

- L_2 длина двухсекционного электровоза, м. Принимается по Приложению 1;
- L_i длина вагона i-го типа, м. Принимается по таблице 2 методических указаний.
- **Делаем проверку**: если $L_{\rm n} + 10 > L_{\rm nn}$, то последовательно уменьшаем число вагонов каждого типа на 1 до тех пор, пока условие выполняется.
- $L_{\rm nn}$ длина приемо-отправочных путей, м. Принимается по заданию.
- Если производилась корректировка числа вагонов, то пересчитываем массу состава: $Q = \sum_{i=1}^{3} (Q_i \cdot N_i)$.

Рассчитываем магнитный поток тягового электродвигателя в режиме рекуперативного торможения при скорости 80 км/ч:

$$C\Phi_{\rm K} = \frac{U_{\rm KC} + I_{\rm S} \cdot \left(2 \cdot (R_{\rm S} + R_{\rm Д\Pi} + R_{\rm KO}) + R_{\rm ИШ} + R_{\rm CT}\right)}{{\bf 2M}80}, \ \frac{{\bf B} \cdot {\bf q}}{}.$$

 $R_{_{
m HIII}}$ — сопротивление индуктивного шунта, Ом. Принимается по Приложению 1;

 $R_{\rm cr}$ — сопротивление стабилизирующего резистора, Ом. Принимается по Приложению 1.

Рассчитываем величину тока возбуждения тягового электродвигателя, необходимого для создания рассчитанного магнитного потока:

$$I_{\rm B} = \frac{I_{\rm BH}}{206} \cdot 12 \cdot \frac{C\Phi_{\rm K}}{C},$$

Делаем проверку:
$$\frac{I_{B}}{I_{\pi}} \ge \frac{1}{4}$$
.

Если условие не выполняется, то последовательно уменьшаем $I_{\rm g}$ на 10 A; рассчитываем магнитный поток и ток возбуждения; делаем проверку. $I_{\rm g}$ уменьшаем до тех пор, пока условие выполняется. В дальнейшем используем полученное значение $I_{\rm g}$.

Рассчитываем величину тормозной силы электровоза:

$$B_{\rm Kp} = \frac{\Phi_{367} \cdot \mathcal{E} \cdot I_{\rm K} \cdot I_{\rm K}}{k_{\rm m}} \cdot \mathbb{H} \cdot N_{\rm c},$$

Рассчитываем величину коэффициента сцепления колес электровоза с рельсами для скорости 80 км/ч:

$$\Psi_{\rm K} = 0.28 + \frac{3}{50 + 20 \cdot V} - 0.0007 \cdot V.$$

Рассчитываем величину допустимой тормозной силы по условиям сцепления колес электровоза с рельсами:

$$B_{\text{сц}} = 0.8 \cdot 1000 \cdot G \cdot g \cdot \Psi_{\text{K}}$$
.

Делаем проверку: если $B_{\text{кр}} > B_{\text{сц}} \Longrightarrow B_{\text{кр}} = B_{\text{сц}}$.

Рассчитываем величину удельного сопротивления движению электровоза для скорости 80 км/ч:

$$w'_{o} = 1,9 + 0,01 \cdot V + 0,0003 \cdot V^{2}, \frac{H}{\kappa H}.$$

Рассчитываем величину удельного сопротивления движению каждого типа вагонов для скорости 80 км/ч:

$$w_{\text{oi}}'' = a_i + \frac{b_i + c_i \cdot V + d_i \cdot V^2}{q_{\text{oi}}}, \quad \frac{H}{\kappa H}.$$

Вычисляем сопротивление движению состава:

$$w_{o}'' = \sum_{i=1}^{3} w_{oi}'' \cdot \beta_{i}, \frac{H}{\kappa H}.$$

Рассчитываем величину массы состава:

$$Q_{p} = -\frac{B_{kp} + G \cdot g \cdot (w'_{o} + i_{pp})}{(w''_{o} + i_{pp}) \cdot g} T.$$

Делаем проверку: $Q > Q_{\rm pr} \Rightarrow Q = Q_{\rm pr}$.

Если условие выполнилось и масса состава скорректирована, то рассчитываем число вагонов и вычисляем массу состава через число вагонов, проверяя при этом, чтобы разность массы, рассчитанной через число вагонов и принятой по условиям рекуперативного торможения не была больше $Q_{i\,\mathrm{min}}$

Рассчитываем величину коэффициента инерции вращающихся частей поезда:

 $(1+\gamma)_{_9}$ — коэффициент инерции вращающихся частей электровоза. Принимается равным 1,225;

 $(1+\gamma)_{\rm B}$ — коэффициент инерции вращающихся частей вагонов. Принимается равным 1,035.

Рассчитываем величину тока возбуждения тягового электродвигателя на высшей ступени ослабления

возбуждения: $C\Phi_{\text{K}} = \frac{C\Phi_{\text{H}}}{\text{kM}} \cdot \arctan\left(2,6 \cdot \frac{I_{\text{g}} \cdot \beta_{4}}{I_{\text{BH}}}\right), \frac{B \cdot \Psi}{1}$

β₄ – коэффициент ослабления возбуждения ТЭД на 4-й ступени. Принимается по Приложению 1.

Рассчитываем скорость выхода на автоматическую характеристику 4-й ступени ослабления возбуждения ТЭД:

$$V_{\rm a} = \frac{U_{\rm KC} - 2 \cdot I_{\rm g} \cdot (R_{\rm g} + R_{\rm Д\Pi} + R_{\rm KO} + R_{\rm \Gamma\Pi} \cdot \beta_4)}{\Phi C_{\rm K}}, \frac{\rm KM}{\rm q}.$$

Делаем проверку: если $V_a > 81$, то производим расчет магнитного потока и скорости для β_3 . Расчеты делаем до тех пор, пока выполняется условие. В дальнейших расчетах используем последнюю величину $C\Phi_{\kappa}$ и степень ослабления возбуждения, которую обозначаем β_{\min} .

Рассчитываем силу тяги электровоза при выходе на автоматическую характеристику минимальной ступени ослабления возбуждения ТЭД:

$$F_{Ka} = 0.367 \cdot g \cdot C\Phi_{K} \cdot I_{g} \cdot k_{\Pi} \cdot 4 \cdot N_{c}, H.$$

Делаем проверку: если $79 \le V_{\rm a} \le 81$, то принимаем $F_{\rm \kappa a} = F_{\kappa 80}$. Следующие 2 слайда пропускаем.

Подбираем ток якоря ТЭД, соответствующий скорости 80 км/ч:

- 1. Уменьшаем ток якоря от заданного значения на 10 А.
- 2. Рассчитываем магнитный поток

$$C\Phi_{K} = \frac{C\Phi_{H}}{k N} \cdot arctg \left(2, 6 \cdot \frac{I_{g} \cdot \beta_{min}}{I_{BH}} \right), \frac{B \cdot \Psi}{I_{BH}}.$$

3. Рассчитываем скорость

$$V = \frac{U_{\text{KC}} - 2 \cdot I_{\text{S}} \cdot (R_{\text{S}} + R_{\text{Д\Pi}} + R_{\text{KO}} + R_{\text{ГП}} \cdot \beta_{\text{min}})}{\Phi C_{\text{K}}}, \quad \frac{\text{KM}}{\text{Y}}.$$

4. **Проверяем условие**: $79 \le V \le 81$. Если условие не выполняется — возвращаемся к п.1.

Рассчитываем силу тяги электровоза при скорости 80 км/ч:

$$F_{\kappa 80} = 0.367 \cdot g \cdot C\Phi_{\kappa 80} \cdot I_{g80} \cdot k_{g} \cdot 4 \cdot N_{c}, H.$$

 $F_{_{\rm K80}}=0,367\cdot g\cdot C\Phi_{_{\rm K80}}\cdot I_{_{\rm Я80}}\cdot k_{_{\rm \Pi}}\cdot 4\cdot N_{_{\rm C}},\,{\rm H}.$ $C\Phi_{_{\rm K80}}-$ магнитный поток ТЭД при скорости $80\,$ км/ч.

Используется последнее подобранное значение;

 $I_{_{\rm Я}80}$ — ток якоря ТЭД при скорости 80 км/ч. Используется последнее подобранное значение.

Рассчитываем максимальный магнитный поток ТЭД в режиме рекуперативного торможения:

$$C\Phi_{\text{KT max}} = \frac{C\Phi_{\text{H}}}{\text{kM}} \cdot \arctan\left(2,6 \cdot \frac{I_{\text{B max}}}{I_{\text{BH}}}\right), \frac{B \cdot \Psi}{I_{\text{BH}}}.$$

 $I_{\mathrm{B\ max}}$ — максимальный ток возбуждения ТЭД в режиме рекуперативного торможения. Принимается по Приложению 1.

Рассчитываем скорость окончания рекуперативного торможения:

$$V_{\text{p min}} = \frac{U_{\text{KC}} + I_{\text{g}} \cdot \left(m \cdot (R_{\text{g}} + R_{\text{д\Pi}} + R_{\text{KO}}) + \frac{m}{2} R_{\text{иш}} + R_{\text{CT}} \right)}{\mathscr{M} \cdot \Phi_{\text{KT max}}}, \quad \frac{\text{KM}}{\text{q}}.$$

m — число последовательно включенных якорей ТЭД при окончании рекуперативного торможения. При $N_{\rm c}=2~m=8;$ при $N_{\rm c}=3~m=4.$

Рассчитываем тормозную силу электровоза в момент окончания рекуперативного торможения:

$$B_{\text{KT}m} = \frac{\Phi_{367} \cdot \mathcal{E} \cdot \prod_{\text{KT max}} I \cdot \prod_{\text{KT max}} \cdot \mathbf{H} \cdot N_{\text{c}},$$

Рассчитываем коэффициент сцепления колес электровоза с рельсами при скорости $V_{\rm n \, min}$:

$$\Psi_{\rm K} = 0.28 + \frac{3}{50 + 20 \cdot V_{\rm p \, min}} - 0.0007 \cdot V_{\rm p \, min}.$$

Рассчитываем величину допустимой тормозной силы по условиям сцепления колес электровоза с рельсами:

$$B_{\text{сц}} = 0.8 \cdot 1000 \cdot G \cdot g \cdot \Psi_{\text{K}}.$$

Делаем проверку: если $B_{\text{кт}m} > B_{\text{сц}} \Rightarrow B_{\text{кт}m} = B_{\text{сц}}$.

Заполняем следующую таблицу (табл.3 МУ):

Suitetimient etterjie ittetiming (ittetite ivit).						
Режим	$F_{_{ m K}}$	$V_{ m cp}$				
Пуск	$F_{_{ m KP}}$	$V_{\rm p}/2$				
Разгон до выхода на	$F_{\rm kp} + F_{\rm ka}$	$V_{\rm p} + V_{\rm a}$				
максимальную ступень	$\frac{\kappa p}{2}$	$\frac{p}{2}$				
ослабления возбуждения	2	2				
Разгон на автоматической	$F_{\kappa a} + F_{\kappa 80}$	$V_{\rm a} + 80$				
характеристике	2	2				
Рекуперативное	$B_{\mathrm{Kp}} + B_{\mathrm{KT}m}$	$V_{\text{p min}} + 80$				
торможение	2	2				
Дотормаживание	$B_{_{ m KT}m}$	$V_{\rm p min}/2$				

Рассчитываем основное удельное сопротивление движению поезда для всех скоростей $V_{\rm cp}$, рассчитанных для таблицы 3 по следующим формулам:

$$w'_{o} = 1,9 + 0,01 \cdot V + 0,0003 \cdot V^{2}, \frac{H}{\kappa H}.$$

$$w_{\text{oi}}'' = a_i + \frac{b_i + c_i \cdot V + d_i \cdot V^2}{q_{\text{o}i}}, \quad \frac{H}{\kappa H}.$$

$$w_{o}'' = \sum_{i=1}^{3} w_{oi}'' \cdot \beta_{i}, \frac{H}{\kappa H}.$$

$$w_{o} = \frac{w'_{o} \cdot G + w''_{o} \cdot Q}{G + Q}, \frac{H}{\kappa H}.$$

Рассчитываем эквивалентный уклон перегона:

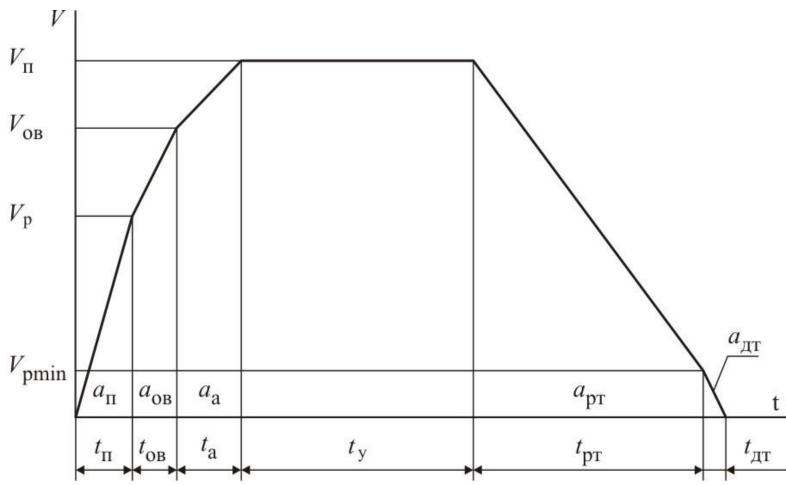
$$i_{\mathfrak{I}} = \frac{\displaystyle\sum_{i=1}^{n} i_{\mathfrak{I} \pi i} \cdot S_{\mathfrak{I} \pi i}}{\displaystyle\sum_{i=1}^{n} S_{\mathfrak{I} \pi i}}, \% 0.$$

При расчете используем спрямленный профиль, полученный в п.1.

Рассчитываем средние ускорения поезда для всех режимов разгона таблицы 3:

$$a = \frac{F_{K} - (w_{O} + i_{3}) \cdot (G + Q) \cdot g}{(G + Q) \cdot 1000 \cdot (1 + \gamma)}, \frac{M}{c^{2}}.$$

Рассчитываем средние замедления поезда для всех режимов торможения таблицы 3:


$$a = \frac{F_{K} + (w_{O} + i_{3}) \cdot (G + Q) \cdot g}{(G + Q) \cdot 1000 \cdot (1 + \gamma)}, \frac{M}{c^{2}}.$$

Заполняем следующую таблицу (табл. 4 МУ):

заполняем следующую таолицу (таол. 4 МУ):							
Пуск	$V_{\rm p}$, км/ч	F_{κ} , H	w_{o} , H/kH	$a_{\rm II}$, ${\rm M/c^2}$			
TIYCK	F		Ç				
Разгон до выхода на	$V_{ m a}$, км/ч	F_{κ} , H	w _o , Н/кН	g 35/2 ²			
максимальную				a_{ob} , M/c^2			
ступень ослабления							
возбуждения							
Разгон на		$oxed{F}$ $oxed{H}$	142 H/16H	$a M/c^2$			
автоматической	_	F_{κ} , H	w _o , Н/кН	$a_{\rm a}$, M/c^2			
характеристике							
Рекуперативное	$V_{\text{p min}}$, км/ч	F_{κ} , H	w _o , Н/кН	$a_{\rm pr}$, M/c^2			
торможение	r			r			
Поторможирония	_	F_{κ} , H	w_{o} , H/kH	$a_{\rm HT}$, M/c^2			
Дотормаживание		K		A1			

7. Расчет расхода электроэнергии на движение поезда по перегону.

Предполагаем, что при движении поезда по перегону скорость движения зависит от времени следующим образом:

7. Расчет расхода электроэнергии на движение поезда по перегону.

Заготавливаем таблицу (табл.6 МУ).

Рассчитываем расход электроэнергии на приобретение поездом кинетической энергии при разгоне до скорости V_{π} , которая принимает значения 40, 50, 60, 70, 80 км/ч:

$$\mathbf{A}\mathbf{R}\mathbf{T} = \frac{(G+Q)\cdot(1+\gamma)\cdot V_{\Pi}^{2}}{\mathbf{2}\cdot 3,\mathbf{6}^{2}\cdot 3600\cdot \mathbf{T}_{\Pi}\cdot \mathbf{T}_{\Pi}}, \qquad \cdot$$

Результаты заносим в соответствующую строку заготовленной таблицы.

7. Расчет расхода электроэнергии на движение поезда по перегону.

Рассчитываем время пуска для всех значений $V_{_{\Pi}}$:

$$t_{\Pi} = \frac{V}{a_{\Pi} \cdot 3, 6 \cdot 60}$$
, мин.

Скорость V выбираем из условия: если $V_{\Pi} < V_{\mathfrak{p}}$, то $V = V_{\Pi}$, иначе $V = V_{\rm p}$; $a_{_{\Pi}}$ — среднее ускорение в режиме пуска, м/с². Принимается

из табл.4.

Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем путь пуска для всех значений $V_{_{\Pi}}$: $\mathbf{M}_{_{\text{р}\Pi}} = \frac{a_{_{\Pi}} \cdot (t_{_{\Pi}} \cdot 60)^2}{2},$

$$\mathbf{a}_{\mathrm{pri}} = \frac{a_{\mathrm{ri}} \cdot (t_{\mathrm{ri}} \cdot 60)^2}{2},$$

Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем расход электроэнергии на преодоление сопротивления движению для всех значений $V_{_{\Pi}}$:

Рассчитываем расход электроэнергии на пусковые потери для всех значений $V_{_{\!\!\!\Pi}}$:

$$A_{\Pi\Pi} = \left[\frac{(G+Q) \cdot (1+\gamma) \cdot V^2}{2 \cdot 3,6^2 \cdot 3600} + \frac{(G+Q) \cdot g \cdot (w_{p\Pi} + j) \cdot \varsigma_{\Pi}}{1000 \cdot 3600} \right] \cdot k_{\Pi\Pi},$$

кВт · ч.

Скорость V выбираем из условия: если $V_{\Pi} < V_{\rm p}$, то $V = V_{\Pi}$, иначе $V = V_{\rm p}$; $w_{\rm on}$ — усредненное основное удельное сопротивление

движению в режиме пуска, Н/кН. Принимается из табл.4; $k_{\rm nn}$ – коэффициент пусковых потерь. Принимается по условию: если $N_{\rm c}=3$, то $k_{\rm nn}=0.5$; если $N_{\rm c}=2$, то $k_{\rm nn}=3/8$.

Рассчитываем время разгона до выхода на максимальную ступень ослабления возбуждения ТЭД для всех значений

$$V_{\Pi}$$
:
$$t_{\text{OB}} = \frac{\Delta V}{a_{\text{OB}} \cdot 3, 6 \cdot 60}$$
 мин.

Приращение скорости ΔV выбираем из условий:

если
$$V_{\Pi} < V_{p}$$
, то $\Delta V = 0$; если $V_{p} < V_{q} < V_{a}$, то $\Delta V = V_{\Pi} - V_{p}$; если $V_{\Pi} \geq V_{a}$, то $\Delta V = V_{a} - V_{p}$;

 $a_{\rm ob}$ — среднее ускорение в режиме разгона до выхода на максимальную ступень ослабления возбуждения ТЭД, м/с². Принимается из табл.4.

Рассчитываем путь разгона до выхода на максимальную ступень ослабления возбуждения ТЭД для всех значений

$$V_{\Pi}$$
: $\mathbf{E}_{\text{pob}} = \frac{a_{\text{ob}} \cdot (t_{\text{ob}} \cdot 60)^2}{2},$

Рассчитываем расход электроэнергии на преодоление сопротивления движению на пути разгона до выхода на максимальную ступень ослабления возбуждения ТЭД для всех значений $V_{_{\Pi}}$:

$$A_{wpB} = \frac{(G+Q) \cdot g \cdot (w_{op} + i) \cdot S_{B}}{10000 \cdot 3600 \cdot T_{TJ} \cdot T_{TI}}$$
 кВт ч.

 $w_{\rm opob}$ — усредненное основное удельное сопротивление движению на пути разгона до выхода на максимальную ступень ослабления возбуждения ТЭД , Н/кН.

Принимается из табл.4.

Рассчитываем время разгона на автоматической характеристике ТЭД для всех значений $V_{_{\!\!\!\Pi}}$:

$$t_{\rm a} = \frac{\Delta V}{a_{\rm a} \cdot 3, 6 \cdot 60}$$
мин.

Приращение скорости ΔV выбираем из условий: если $V_{\Pi} < V_{a}$, то $\Delta V = 0$; иначе $\Delta V = V_{\Pi} - V_{a}$; a_{a} — среднее ускорение в режиме разгона на автоматической характеристике ТЭД , м/с². Принимается из табл.4.

Рассчитываем путь разгона на автоматической характеристике ТЭД для всех значений $V_{_{\Pi}}$:

$$\mathbf{M}_{pa} = \frac{a_{a} \cdot (t_{a} \cdot 60)^{2}}{2},$$

Рассчитываем расход электроэнергии на преодоление сопротивления движению на пути разгона на автоматической характеристике ТЭД для всех значений $V_{_{\Pi}}$:

$$A_{wp} = \frac{(G+Q) \cdot g \cdot (w_{op} + i) \cdot S}{h000\eta 3600 \cdot S}$$
 кВт ч.

 $w_{\rm opa}$ — усредненное основное удельное сопротивление движению на пути разгона на автоматической характеристике ТЭД, Н/кН. Принимается из табл.4. Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем суммарный расход электроэнергии на преодоление сопротивления движению на пути разгона для всех значений V_{π} :

$$A_{wp} = A_{wp\pi} + A_{wpoB} + A_{wpa}$$
, к $B_T \cdot \Psi$.

Рассчитываем время режима дотормаживания для всех значений V_{π} :

$$t_{\text{дт}} = \frac{\Delta V}{a_{\text{дт}} \cdot 3, 6 \cdot 60}$$
,мин.

Приращение скорости ΔV выбираем из условий: если $V_{_{\Pi}} < V_{_{\rm p\,min}}$, то $\Delta V = V_{_{\Pi}}$; иначе $\Delta V = V_{_{\rm p\,min}}$; $a_{_{\Pi T}} -$ среднее замедление в режиме дотормаживания, м/с².

Принимается из табл.4.

$$\mathbf{M}_{\mathrm{AT}} = \frac{a_{\mathrm{AT}} \cdot (t_{\mathrm{AT}} \cdot 60)^{2}}{2},$$

Рассчитываем время режима рекуперативного торможения для всех значений V_{π} :

$$t_{\rm pr} = \frac{\Delta V}{a_{\rm pr} \cdot 3, 6 \cdot 60}$$
, мин.

Приращение скорости ΔV выбираем из условий: если $V_{\Pi} \leq V_{\text{p min}}$, то $\Delta V = 0$; иначе $\Delta V = V_{\Pi} - V_{\text{p min}}$; a_{pT} — среднее замедление в режиме рекуперативного торможения , м/с². Принимается из табл.4. Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем путь режима рекуперативного торможения для всех значений $V_{_{\!\!\!\Pi}}$:

$$\mathbf{M}_{\mathbf{p}_{\mathrm{T}}} = \frac{a_{\mathrm{MT}} \cdot (t_{\mathbf{p}_{\mathrm{T}}} \cdot 60)^{2}}{2},$$

Рассчитываем возврат электроэнергии в режиме рекуперативного торможения для значений $V_{_{\Pi}} > V_{_{\mathrm{p\,min}}}$:

$$A_{p} = \frac{(G+Q)\cdot(1+\gamma)\cdot(V_{\Pi}^{2}-V_{p \min}^{2})\cdot\eta_{T\Pi}\cdot\eta_{T\Pi}}{2\cdot3,6^{2}\cdot3600} - \frac{(G+Q)\cdot g\cdot(w_{\varpi p}+i)\cdot\varsigma}{1000\cdot3600}$$
, кВт ч.

 $w_{\rm opt}$ — усредненное основное удельное сопротивление движению на пути рекуперативного торможения, Н/кН. Принимается из табл.4.

Рассчитываем путь движения со скоростью $V_{_\Pi}$ для всех значений $V_{_\perp}$:

Рассчитываем время движения со скоростью $V_{_{\Pi}}$ для всех значений $V_{_{\Pi}}$: $S_{_{M}} \cdot 60$

значении
$$V_{_{\Pi}}$$
: $t_{_{
m y}} = \frac{S_{_{
m y}} \cdot 60}{V_{_{
m H}} \cdot 1000}$, мин. Результаты заносим в соответствующую стро

Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем основное удельное сопротивление движению поезда для всех значений $V_{_{\Pi}}$ аналогично расчету массы состава.

Рассчитываем расход электроэнергии на преодоление основного сопротивления движению на участке движения со скоростью $V_{_{\Pi}}$ для всех значений $V_{_{\Pi}}$:

$$\mathbf{AB}_{W\Pi} = \frac{(G+Q) \cdot g \cdot (w_{y} + \underline{i}) \cdot \underline{S}}{\hbar 000 \eta \, 3600 \cdot _{TД} \cdot _{T\Pi}}, \qquad \cdot$$

 $w_{\rm oy}$ — основное удельное сопротивление движению на участке движения со скоростью $V_{\rm n}$, H/кH. Результаты заносим в соответствующую строку заготовленной таблицы.

$$T_{\rm x} = t_{\rm II} + t_{\rm OB} + t_{\rm a} + t_{\rm y} + t_{\rm pT} + t_{\rm дT}$$
, мин.

Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем расход электроэнергии на собственные нужды: II = N = T

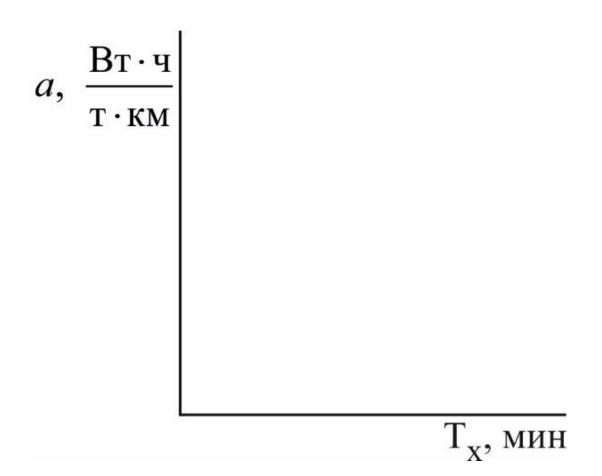
$$\mathbf{A}_{\text{CH}} = I_{\text{CH}} \cdot \frac{U_{\text{KC}}}{1000} \cdot \frac{N_{\text{c}}}{2} \cdot \frac{T_{\text{x}}}{60}$$

 $I_{\rm ch}$ — расчетный ток, потребляемый на собственные нужды двухсекционного электровоза, А. Принимается по приложению 1.

Рассчитываем расход электроэнергии на движение поезда по перегону без учета рекуперации для всех значений V_{Π} :

$$A_{T} = A_{K} + A_{WP} + A_{W\Pi} + A_{\Pi\Pi} + A_{CH}, KBT \cdot \Psi.$$

- Результаты заносим в соответствующую строку заготовленной таблицы.
- Рассчитываем расход электроэнергии на движение поезда по перегону с учетом рекуперации для всех значений $V_{_{\Pi}}$: $A = A_{_{T}} A_{_{D}}$, кBт·ч.
- Результаты заносим в соответствующую строку заготовленной таблицы.


Рассчитываем удельный расход электроэнергии на движение поезда по перегону без учета рекуперации для всех значений V_{Π} : $\mathbf{a}_{\mathsf{бp}} = \frac{\mathbf{B} 000 \cdot \mathbf{A}_{\mathsf{T}}}{(\mathbf{G} \mathsf{KM} Q) \cdot \sum S_{\mathsf{Э}\Pi}}, \ \cdots$.

Результаты заносим в соответствующую строку заготовленной таблицы.

Рассчитываем удельный расход электроэнергии на движение поезда по перегону с учетом рекуперации для

всех значений
$$V_{\Pi}$$
: $a = \frac{\mathbf{B}000 \cdot \mathbf{A}}{(\mathbf{G} \times \mathbf{M} Q) \cdot \sum S_{3\Pi}}, \frac{\cdot}{\cdot}$.

На одном графике строим зависимости ${\bf a}=f(T_{\bf x}),\,{\bf a}_{\rm \delta p}=f(T_{\bf x})$:

