Linear Algebra

Chapter 3 Determinants

3.1 Introduction to Determinants

Definition

The **determinant** of a 2×2 matrix *A* is denoted |A| and is given by

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Observe that the determinant of a 2×2 matrix is given by *the different of the products of the two diagonals* of the matrix. The notation det(A) is also used for the determinant of A.

Example 1

$$A = \begin{bmatrix} 2 & 4 \\ -3 & 1 \end{bmatrix}$$
$$\det(A) = \begin{vmatrix} 2 & 4 \\ -3 & 1 \end{vmatrix} = (2 \times 1) - (4 \times (-3)) = 2 + 12 = 14$$

Definition

Let A be a square matrix.

The **minor** of the element a_{ij} is denoted M_{ij} and is the determinant of the matrix that remains after deleting row *i* and column *j* of *A*. The **cofactor** of a_{ij} is denoted C_{ij} and is given by $C_{ij} = (-1)^{i+j} M_{ij}$

Note that $C_{ij} = M_{ij}$ or $-M_{ij}$.

Determine the minors and cofactors of the elements a_{11} and a_{32} of the following matrix A.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 4 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix}$$

Solution
Minor of $a_{11}: M_{11} = \begin{bmatrix} 1 & 0 & 3 \\ 4 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 1 \end{bmatrix} = (-1 \times 1) - (2 \times (-2)) = 3$

Cofactor of
$$a_{11}$$
: $C_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$
Minor of a_{32} : $M_{32} = \begin{vmatrix} 1 & 0 & 3 \\ 4 & -1 & 2 \\ 0 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix} = (1 \times 2) - (3 \times 4) = -10$

Cofactor of a_{32} : $C_{32} = (-1)^{3+2} M_{32} = (-1)^5 (-10) = 10$

Definition

The **determinant of a square matrix** is the sum of the products of the elements of the first row and their cofactors.

If
$$A ext{ is } 3 \times 3$$
, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$
If $A ext{ is } 4 \times 4$, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$

If
$$A$$
 is $n \times n$, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + \mathbb{B} + a_{1n}C_{1n}$

These equations are called **cofactor expansions** of |A|.

Evaluate the determinant of the following matrix A.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

Solution

$$\begin{aligned} A &| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \\ &= 1(-1)^2 \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} + 2(-1)^3 \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} + (-1)(-1)^4 \begin{vmatrix} 3 & 0 \\ 4 & 2 \end{vmatrix} \\ &= [(0 \times 1) - (1 \times 2)] - 2[(3 \times 1) - (1 \times 4)] - [(3 \times 2) - (0 \times 4)] \\ &= -2 + 2 - 6 \\ &= -6 \end{aligned}$$

Theorem 3.1

The determinant of a square matrix is the sum of the products of the elements of <u>any row or column</u> and their cofactors.

*i*th row expansion: $|A| = a_{i1}C_{i1} + a_{i2}C_{i2} + \mathbb{X} + a_{in}C_{in}$ *j*th column expansion: $|A| = a_{1j}C_{1j} + a_{2j}C_{2j} + \mathbb{X} + a_{nj}C_{nj}$

Example 4

Find the determinant of the following matrix using the second row. $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ Solution

$$\begin{aligned} |A| &= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} \\ &= -3 \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & -1 \\ 4 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} \\ &= -3[(2 \times 1) - (-1 \times 2)] + 0[(1 \times 1) - (-1 \times 4)] - 1[(1 \times 2) - (2 \times 4)] \\ &= -12 + 0 + 6 = -6 \end{aligned}$$

Evaluate the determinant of the following 4×4 matrix. $\begin{bmatrix} 2 & 1 & 0 & 4 \\ 0 & -1 & 0 & 2 \\ 7 & -2 & 3 & 5 \\ 0 & 1 & 0 & -3 \end{bmatrix}$

Solution

$$|A| = a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33} + a_{43}C_{43}$$

= 0(C₁₃) + 0(C₂₃) + 3(C₃₃) + 0(C₄₃)
= $3\begin{vmatrix} 2 & 1 & 4 \\ 2 & 1 & 4 \\ = 3\begin{vmatrix} 0 & -1 & 2 \\ 0 & 1 & -3 \end{vmatrix}$
= 3(2) $\begin{vmatrix} -1 & 2 \\ 1 & -3 \end{vmatrix}$ = 6(3-2) = 6

Solve the following equation for the variable x. $\begin{vmatrix} x & x+1 \\ -1 & x-2 \end{vmatrix} = 7$

Solution

Expand the determinant to get the equation

$$x(x-2) - (x+1)(-1) = 7$$

Proceed to simplify this equation and solve for *x*.

$$x^{2}-2x + x + 1 = 7$$

$$x^{2}-x-6 = 0$$

$$(x+2)(x-3) = 0$$

$$x = -2 \text{ or } 3$$

There are two solutions to this equation, x = -2 or 3.

Computing Determinants of 2 × 2 and 3 × 3 Matrices

 $\Rightarrow |\mathbf{A}| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$ (diagonal products from left to right)

> $-a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$ (diagonal products from right to left)

• Exercises will be given by the teachers of the practical classes.

3.2 Properties of Determinants

Theorem 3.2

Let *A* be an $n \times n$ matrix and *c* be a nonzero scalar. (a) If $A \underset{cRk}{\approx} B$ then |B| = c|A|. (b) If $A \underset{Ri \leftrightarrow Rj}{\approx} B$ then |B| = -|A|. (c) If $A \underset{Ri + cRj}{\approx} B$ then |B| = |A|.

Proof (a)

$$|A| = a_{k1}C_{k1} + a_{k2}C_{k2} + \dots + a_{kn}C_{kn}$$

$$|B| = ca_{k1}C_{k1} + ca_{k2}C_{k2} + \dots + ca_{kn}C_{kn}$$

$$\therefore |B| = c|A|.$$

Evaluate the determinant

$$\begin{array}{ccccccc} 3 & 4 & -2 \\ -1 & -6 & 3 \\ 2 & 9 & -3 \end{array}$$

Solution

$$\begin{vmatrix} 3 & 4 & -2 \\ -1 & -6 & 3 \\ 2 & 9 & -3 \end{vmatrix} \stackrel{=}{\underset{C2+2C3}{=}} \begin{vmatrix} 3 & 0 & -2 \\ -1 & 0 & 3 \\ 2 & 3 & -3 \end{vmatrix} = (-3) \begin{vmatrix} 3 & -2 \\ -1 & 3 \end{vmatrix} = -21$$

If
$$A = \begin{bmatrix} 1 & 4 & 3 \\ 0 & |A| \not= 125 \text{is known.} \\ -2 & -4 & 10 \end{bmatrix}$$
 known.

Evaluate the determinants of the following matrices.

(a)
$$B_1 = \begin{bmatrix} 1 & 12 & 3 \\ 0 & 6 & 5 \\ -2 & -12 & 10 \end{bmatrix}$$
 (b) $B_2 = \begin{bmatrix} 1 & 4 & 3 \\ -2 & -4 & 10 \\ 0 & 2 & 5 \end{bmatrix}$ (c) $B_3 = \begin{bmatrix} 1 & 4 & 3 \\ 0 & 2 & 5 \\ 0 & 4 & 16 \end{bmatrix}$

Solution

(a)
$$A_{3C2} \approx B_1$$
 Thus $|B_1| = 3|A| = 36$.

(b)
$$A \approx_{R2 \leftrightarrow R3} B_2$$
 Thus $|B_2| = -|A| = -12$.

(c) $A \approx_{R3+2R1} B_3$ Thus $|B_3| = |A| = 12$.

Definition

A square matrix A is said to be **singular** if |A|=0. A is **nonsingular** if $|A|\neq 0$.

Theorem 3.3

Let A be a square matrix. A is singular if

- (a) all the elements of a row (column) are zero.
- (b) two rows (columns) are equal.
- c) two rows (columns) are proportional. (i.e., Ri=cRj)

Proof

(a) Let all elements of the *k*th row of *A* be zero.

$$A = a_{k1}C_{k1} + a_{k2}C_{k2} + \mathbb{X} + a_{kn}C_{kn} = 0C_{k1} + 0C_{k2} + \mathbb{X} + 0C_{kn} = 0$$

(c) If Ri = cRj, then $A \underset{Ri = cRj}{\approx} B$, row *i* of *B* is $[0 \ 0 \dots 0]$. $\Rightarrow |A| = |B| = 0$

Show that the following matrices are singular.

(a)
$$A = \begin{bmatrix} 2 & 0 & -7 \\ 3 & 0 & 1 \\ -4 & 0 & 9 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix}$

Solution

- (a) All the elements in column 2 of A are zero. Thus |A| = 0.
- (b) Row 2 and row 3 are proportional. Thus |B| = 0.

Theorem 3.4

Let A and B be $n \times n$ matrices and c be a nonzero scalar.

(a)
$$|cA| = c^{n}|A|$$
.
(b) $|AB| = |A||B|$.
(c) $|A^{t}| = |A|$.
(d) $|A^{-1}| = \frac{1}{|A|}$ (assuming A^{-1} exists)

Proof

(a)

$$A \underset{cR1, cR2, ..., cRn}{\approx} cA \implies |cA| = c^{n} |A|$$
(d)

$$|A| \cdot |A^{-1}| = |A \cdot A^{-1}| = |I| = 1 \implies |A^{-1}| =$$

If A is a 2×2 matrix with |A| = 4, use Theorem 3.4 to compute the following determinants.

(a) |3A| (b) $|A^2|$ (c) $|5A^tA^{-1}|$, assuming A^{-1} exists **Solution**

(a)
$$|3A| = (3^2)|A| = 9 \times 4 = 36.$$

(b) $|A^2| = |AA| = |A| |A| = 4 \times 4 = 16.$
(c) $|5A^tA^{-1}| = (5^2)|A^tA^{-1}| = 25|A^t||A^{-1}| = 25|A|\frac{1}{|A|} = 25.$
Example 5

Prove that $|A^{-1}A^{t}A| = |A|$

Solution

Prove that if *A* and *B* are square matrices of the same size, with *A* being singular, then *AB* is also singular. Is the converse true? **Solution**

 (\Rightarrow) $|A| = 0 \Rightarrow |AB| = |A||B| = 0$ Thus the matrix AB is singular.

(⇐)

$$|AB| = 0 \Rightarrow |A||B| = 0 \Rightarrow |A| = 0 \text{ or } |B| = 0$$

Thus *AB* being singular implies that either *A* or *B* is singular.

The inverse is not true.

Homework

• Exercises will be given by the teachers of the practical classes.

Exercise 11

Prove the following identity without evaluating the determinants.

Solution
$$\begin{vmatrix} a+b & c+d & e+f \\ p & q & r \\ u & v & w \end{vmatrix} = \begin{vmatrix} a & c & e \\ p & q & r \\ u & v & w \end{vmatrix} + \begin{vmatrix} b & d & f \\ p & q & r \\ u & v & w \end{vmatrix}$$

$$\begin{vmatrix} a+b & c+d & e+f \\ p & q & r \\ u & v & w \end{vmatrix} = (a+b) \begin{vmatrix} q & r \\ v & w \end{vmatrix} - (c+d) \begin{vmatrix} p & r \\ u & w \end{vmatrix} + (e+f) \begin{vmatrix} p & q \\ u & v \end{vmatrix}$$

3.3 Numerical Evaluation of a Determinant

Definition

A square matrix is called an **upper triangular matrix** if all the elements below the main diagonal are zero.

It is called a **lower triangular matrix** if all the elements above the main diagonal are zero.

$$\begin{bmatrix} 3 & 8 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 9 \end{bmatrix}, \begin{bmatrix} 1 & 4 & 0 & 7 \\ 0 & 2 & 3 & 5 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 9 & 8 \end{bmatrix}, \begin{bmatrix} 8 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 7 & 0 & 2 & 0 \\ 4 & 5 & 8 & 1 \end{bmatrix}$$

upper - triangular lower - triangular

Numerical Evaluation of a Determinant

Theorem 3.5

The determinant of a triangular matrix is the product of its diagonal elements.

Proof

$$\begin{vmatrix} a_{11} & a_{12} & \boxtimes & a_{1n} \\ 0 & a_{22} & \boxtimes & a_{2n} \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & 0 & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & \boxtimes & a_{2n} \\ 0 & a_{33} & \boxtimes & a_{3n} \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22} \begin{vmatrix} a_{33} & a_{34} & \boxtimes & a_{3n} \\ 0 & a_{44} & \boxtimes & a_{4n} \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & 0 & a_{nn} \end{vmatrix} = \bigotimes = a_{11}a_{22} \boxtimes a_{nn}$$

Example 1

Let
$$A = \begin{bmatrix} 2 & -1 & 9 \\ 0 & 3 & -4 \\ 0 & 0 & -5 \end{bmatrix}$$
, find $|A|$.

Sol.
$$|A| = 2 \times 3 \times (-5) = -30.$$

Evaluation the determinant.
$$\begin{bmatrix} 2 & 4 & 1 \\ -2 & -5 & 4 \\ 4 & 9 & 10 \end{bmatrix}$$

Solution (elementary row operations)

$$\begin{vmatrix} 2 & 4 & 1 \\ -2 & -5 & 4 \\ 4 & 9 & 10 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 1 \\ 0 & -1 & 5 \\ 8 & -2 & -1 \\ 0 & -1 & 5 \\ 0 & 1 & 8 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & 4 & 1 \\ 0 & -1 & 5 \\ 0 & 0 & 13 \end{vmatrix} = 2 \times (-1) \times 13 = -26$$

Evaluation the determinant.

Solution

Evaluation the determinant.
$$\begin{vmatrix} 1 & -2 & 4 \\ -1 & 2 & -5 \\ 2 & -2 & 11 \end{vmatrix}$$

Solution

$$= (-1) \times 1 \times 2 \times (-1) = 2$$

Evaluation the determinant.

Solution

	1	-1	0	2	=	1	-1	0	2	
-	-1	1	2	3	R2 + R1	0	(0)	2	5	= 0
	2	-2	3	4	R3 + (-2)R1	0	0	3	0	
	6	-6	5	1	R4 + (-6)R1	0	0	5	11	

diagonal element is zero and all elements below this diagonal element are zero.

3.4 Determinants, Matrix Inverse, and Systems of Linear Equations

Definition

Let A be an $n \times n$ matrix and C_{ii} be the cofactor of a_{ii} . The matrix whose (i, j)th element is C_{ii} is called the **matrix of** cofactors of A.

The transpose of this matrix is called the **adjoint** of A and is denoted adj(A).

 $\begin{bmatrix} C_{11} & C_{12} & \boxtimes & C_{1n} \\ C_{21} & C_{22} & \boxtimes & C_{2n} \\ \boxtimes & \boxtimes & & \boxtimes \\ C_{n1} & C_{n2} & \boxtimes & C_{nn} \end{bmatrix}$

 $\begin{bmatrix} C_{11} & C_{12} & \boxtimes & C_{1n} \\ C_{21} & C_{22} & \boxtimes & C_{2n} \\ \boxtimes & \boxtimes & & \boxtimes \\ C_{n1} & C_{n2} & \boxtimes & C_{nn} \end{bmatrix}$ matrix of cofactors

adjoint matrix

Give the matrix of cofactors and the adjoint matrix of the following matrix A. $\begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & -2 \end{bmatrix}$

Solution The cofactors of A are as follows.

$$C_{11} = \begin{vmatrix} 4 & -2 \\ -3 & 5 \end{vmatrix} = 14 \quad C_{12} = -\begin{vmatrix} -1 & -2 \\ 1 & 5 \end{vmatrix} = 3 \quad C_{13} = \begin{vmatrix} -1 & 4 \\ 1 & -3 \end{vmatrix} = -1$$

$$C_{21} = -\begin{vmatrix} 0 & 3 \\ -3 & 5 \end{vmatrix} = -9 \quad C_{22} = \begin{vmatrix} 2 & 3 \\ 1 & 5 \end{vmatrix} = 7 \quad C_{23} = -\begin{vmatrix} 2 & 0 \\ 1 & -3 \end{vmatrix} = 6$$

$$C_{31} = \begin{vmatrix} 0 & 3 \\ 4 & -2 \end{vmatrix} = -12 \quad C_{32} = -\begin{vmatrix} 2 & 3 \\ -1 & -2 \end{vmatrix} = 1 \quad C_{33} = \begin{vmatrix} 2 & 0 \\ -1 & 4 \end{vmatrix} = 8$$

The matrix of cofactors of A is $\begin{bmatrix} 14 & 3 & -1 \\ -9 & 7 & 6 \\ -12 & 1 & 8 \end{bmatrix}$ The adjoint of A is

$$\operatorname{adj}(A) = \begin{bmatrix} 14 & -9 & -12 \\ 3 & 7 & 1 \\ -1 & 6 & 8 \end{bmatrix}$$

Theorem 3.6

Let *A* be a square matrix with $|A| \neq 0$. *A* is invertible with $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$

Proof

Consider the matrix product $A \cdot adj(A)$. The (i, j)th element of this product is

(i, j)th element = (row *i* of *A*)×(column *j* of adj(*A*))

$$= \begin{bmatrix} a_{i1} & a_{i2} & \boxtimes & a_{in} \end{bmatrix} \begin{bmatrix} C_{j1} \\ C_{j2} \\ \boxtimes \\ C_{jn} \end{bmatrix}$$
$$= a_{i1}C_{j1} + a_{i2}C_{j2} + \boxtimes + a_{in}C_{jn}$$

Proof of Theorem 3.6

If
$$i = j$$
, $a_{i1}C_{j1} + a_{i2}C_{j2} + \mathbb{B} + a_{in}C_{jn} = |A|$.

If
$$i \neq j$$
, let $A \underset{Rj \text{ is replaced by } Ri}{\Rightarrow} B$. Matrices A and B have the same cofactors
 $C_{j1}, C_{j2}, ..., C_{jn}$.
So $a_{i1}C_{j1} + a_{i2}C_{j2} + \mathbb{N} + a_{in}C_{jn} = |B| = 0$.
Therefore $(i.j)$ th element $=\begin{cases} |A| & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $\therefore A \cdot \text{adj}(A) = |A|I_n$
Since $|A| \neq 0$, $A\left(\frac{1}{|A|} \text{adj}(A)\right) = I_n$
Similarly, $\left(\frac{1}{|A|} \text{adj}(A)\right) A = I_n$.
Thus $A^{-1} = \frac{1}{|A|} \text{adj}(A)$

Theorem 3.7

A square matrix *A* is invertible if and only if $|A| \neq 0$.

Proof

- (\Rightarrow) Assume that A is invertible.
 - $\Rightarrow AA^{-1} = I_n.$ $\Rightarrow |AA^{-1}| = |I_n|.$ $\Rightarrow |A||A^{-1}| = 1$
 - $\Rightarrow |A| \neq 0.$

(\Leftarrow) Theorem 3.6 tells us that if $|A| \neq 0$, then A is invertible.

 A^{-1} exists if and only if $|A| \neq 0$.

Use a determinant to find out which of the following matrices are invertible. $\begin{bmatrix} 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 4 & 12 & -7 \\ -1 & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} -1 & 1 & 2 \\ 2 & 8 & 0 \end{bmatrix}$$

Solution

- $|A| = 5 \neq 0$. *A* is invertible.
- |B| = 0. B is singular. The inverse does not exist.
- |C| = 0. C is singular. The inverse does not exist.

 $|D| = 2 \neq 0$. *D* is invertible.

Use the formula for the inverse of a matrix to compute the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & -2 \\ 1 & -3 & 5 \end{bmatrix}$

Solution

Example 3

|A| = 25, so the inverse of A exists. We found adj(A) in Example 1

$$\operatorname{adj}(A) = \begin{bmatrix} 14 & -9 & -12 \\ 3 & 7 & 1 \\ -1 & 6 & 8 \end{bmatrix}$$
$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{25} \begin{bmatrix} 14 & -9 & -12 \\ 3 & 7 & 1 \\ -1 & 6 & 8 \end{bmatrix} = \begin{bmatrix} \frac{14}{25} & -\frac{9}{25} & -\frac{12}{25} \\ \frac{3}{25} & \frac{7}{25} & \frac{1}{25} \\ -\frac{1}{25} & \frac{6}{25} & \frac{8}{25} \end{bmatrix}$$

• Exercises will be given by the teachers of the practical classes.

• Exercise

Show that if $A = A^{-1}$, then $|A| = \pm 1$. Show that if $A^t = A^{-1}$, then $|A| = \pm 1$.

Theorem 3.8

Let AX = B be a system of *n* linear equations in *n* variables. (1) If $|A| \neq 0$, there is a unique solution. (2) If |A| = 0, there may be many or no solutions.

Proof

- (1) If $|A| \neq 0$
 - $\Rightarrow A^{-1}$ exists (Thm 3.7)
 - \Rightarrow there is then a unique solution given by $X = A^{-1}B$ (Thm 2.9).

(2) If |A| = 0

- ⇒ since $A \approx ... \approx C$ implies that if $|A| \neq 0$ then $|C| \neq 0$ (Thm 3.2).
- \Rightarrow the reduced echelon form of A is not I_n .
- \Rightarrow The solution to the system AX = B is not unique.
- \Rightarrow many or no solutions.

Determine whether or not the following system of equations has an unique solution.

$$3x_1 + 3x_2 - 2x_3 = 2$$

$$4x_1 + x_2 + 3x_3 = -5$$

$$7x_1 + 4x_2 + x_3 = 9$$

Solution

Since

$$\begin{vmatrix} 3 & 3 & -2 \\ 4 & 1 & 3 \\ 7 & 4 & 1 \end{vmatrix} = 0$$

Thus the system does not have an unique solution.

Theorem 3.9 Cramer's Rule

Let AX = B be a system of *n* linear equations in *n* variables such that $|A| \neq 0$. The system has a unique solution given by

$$x_1 = \frac{|A_1|}{|A|}, \ x_2 = \frac{|A_2|}{|A|}, \ \dots, x_n = \frac{|A_n|}{|A|}$$

Where A_i is the matrix obtained by replacing column *i* of *A* with *B*.

Proof

 $|A| \neq 0 \implies$ the solution to AX = B is unique and is given by

$$X = A^{-1}B$$
$$= \frac{1}{|A|} \operatorname{adj}(A)B$$

Proof of Cramer's Rule

Solving the following system of equations using Cramer's rule.

$$x_1 + 3x_2 + x_3 = -2$$

$$2x_1 + 5x_2 + x_3 = -5$$

$$x_1 + 2x_2 + 3x_3 = 6$$

Solution

The matrix of coefficients A and column matrix of constants B are

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 5 & 1 \\ 1 & 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 \\ -5 \\ 6 \end{bmatrix}$$

It is found that $|A| = -3 \neq 0$. Thus Cramer's rule be applied. We

get

$$A_{1} = \begin{bmatrix} -2 & 3 & 1 \\ -5 & 5 & 1 \\ 6 & 2 & 3 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 1 & -2 & 1 \\ -5 & 1 \\ 1 & 6 & 3 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -5 \\ 1 & 2 & 6 \end{bmatrix}$$

Giving
$$|A_1| = -3, |A_2| = 6, |A_3| = -9$$

Cramer's rule now gives

$$x_1 = \frac{|A_1|}{|A|} = \frac{-3}{-3} = 1, \ x_2 = \frac{|A_2|}{|A|} = \frac{6}{-3} = -2, \ x_3 = \frac{|A_3|}{|A|} = \frac{-9}{-3} = 3$$

The unique solution is $x_1 = 1, x_2 = -2, x_3 = 3$.

Determine values of λ for which the following system of equations has nontrivial solutions. Find the solutions for each value of λ . $(\lambda + 2)x_1 + (\lambda + 4)x_2 = 0$

$$2x_1 + (\lambda + 1)x_2 = 0$$

Solution

homogeneous system

$$\Rightarrow x_1 = 0, x_2 = 0$$
 is the trivial solution.

 \Rightarrow nontrivial solutions exist \Rightarrow many solutions

$$\Rightarrow \begin{vmatrix} \lambda + 2 & \lambda + 4 \\ 2 & \lambda + 1 \end{vmatrix} = 0 \Rightarrow (\lambda + 2)(\lambda + 1) - 2(\lambda + 4) = 0 \Rightarrow \lambda^2 + \lambda - 6 = 0 \Rightarrow (\lambda - 2)(\lambda + 3) = 0 \Rightarrow \lambda = -3 \text{ or } \lambda = 2.$$

 $\lambda = -3$ results in the system $-x_1 + x_2 = 0$ $2x_1 - 2x_2 = 0$ This system has many solutions, $x_1 = r, x_2 = r$.

$$\lambda = 2$$
 results in the system
 $4x_1 + 6x_2 = 0$
 $2x_1 + 3x_2 = 0$
This system has many solutions, $x_1 = -3r/2, x_2 = r$.

• Exercises will be given by the teachers of the practical classes.