Лекция

Модели решения функциональных и вычислительных задач. Методы и технологии моделирования

Объекты и их модели

Исходный объект	Модель	Что отображается в модели		
		Свойства	Действия	Среда
Медведь	Плюшевый мишка	Внешний облик		
Автомобиль	Игрушечная машинка	Внешний вид. Основные узлы	Перемещение под действием вращения колес	
Пингвин	Объемная композиция в зоологическом музее	Внешний облик		Антарктичес кий пейзаж, приметы климата

Моделирование – процесс построения, изучения и применения моделей.

Модель – объект или описание объекта для замещения одной системы (оригинала) другой системой для изучения оригинала или воспроизведения его каких-либо свойств.

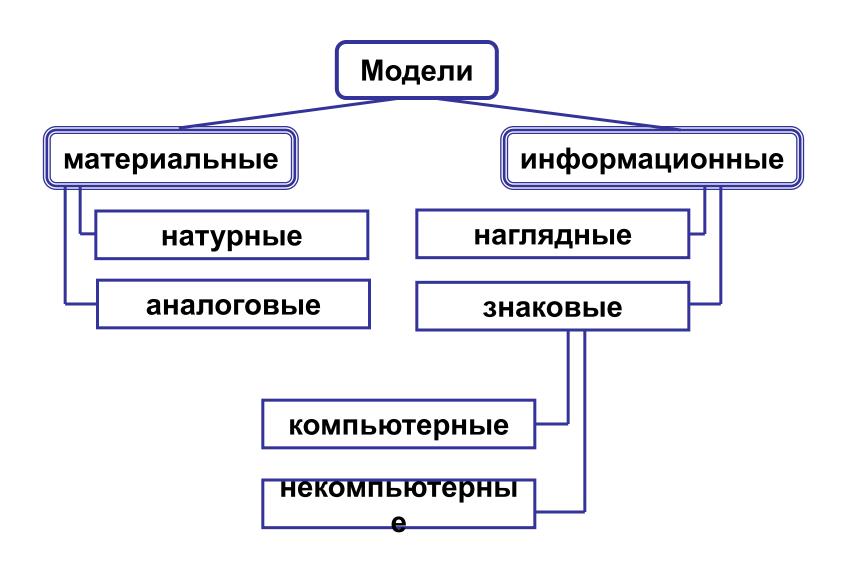
Моделирование (продолжение)

Использование моделирования целесообразно, *если*:

- нет смысла дожидаться наступления интересующих нас событий, растянутых во времени (прогноз численности населения);
- создание объекта чрезвычайно дорого (определение последствий строительства ГЭС);
- исследование объекта приводит к его разрушению (оценка предельного веса снега, который может выдержать купол построенного здания).

Моделирование (продолжение)

ИСПОЛЬЗОВАНИЕ МОДЕЛИРОВАНИЯ
НЕВОЗМОЖНО, ЕСЛИ НЕИЗВЕСТНЫ


СУЩЕСТВЕННЫЕ СВОЙСТВА

ИССЛЕДУЕМОГО ОБЪЕКТА.

Цели моделирования

- 1. Интерпретация прошлого поведения объекта и обобщение имеющихся знаний о нем на основе выявления основных причинно-следственных связей.
- 2. Предсказание будущего поведения объекта **прогноз**: при варьировании условий испытания объекта (влияние внешних электрических и магнитных полей, колебания температуры, давления и т. д.), при имитации экстремальных режимов работы объекта.
- 3. Обновление и совершенствование ранее построенной модели на основе получения новой информации об оригинале.
- 4. Оптимизация параметров системы или ее структуры.
- 5. Создание алгоритма оптимального управления системой с точки зрения заданного критерия.

Классификация моделей по способу моделирования

Классификация моделей по способу моделирования

Материальные модели еще называют предметными, физическими. Они воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение.

Информационная модель — это совокупность информации, характеризующая свойства объекта, процесса или явления.

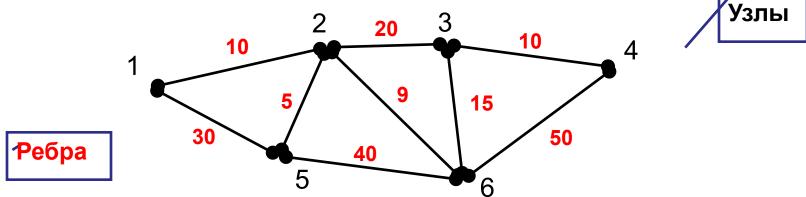
Наглядные модели — образные модели (похожие на объект: рисунок, фото) и схематические модели (использующие графические и символьные обозначения). Знаковые модели — сформулированные на естественном или искусственном языке (описательные (словесные), табличные, математические, компьютерные).

Классификация моделей по способу представления системы (объекта)

1. Черный ящик. Указания входов, выходов и совокупности связей между входами и выходами. При этом не рассматривается, что происходит внутри системы и как она устроена.

Классификация моделей по способу представления системы (объекта)

2. Пространство состояний. Задаются:


- форма описания состояний (перечень возможных состояний или их характеристики);
 - законы перехода из одного состояния в другое (множество правил перехода или зависимости между параметрами);
- при использовании моделирования для управления системой задаются также цели управления.

Модель «Конечный автомат» описывает систему, сравнимую с работой светофора, который переключает режимы работы (цвета) в зависимости от поставленной задачи (регулировка движения, без регулировки движения (мигающий желтый), регулировка движения с оптимизацией (автоматический подбор интервалов работы режимов)

Классификация моделей по способу представления системы (объекта)

3. Структурное моделирование. Описание взаимодействия элементов системы, например материальных, финансовых, миграционных трудовых и т.п. потоков между регионами страны.

Модель для решения «Задача коммивояжера» описывает выбор оптимального (по времени и стоимости) маршрута передвижения представителя компании по клиентам. Данная задача описывается моделью в виде Графа:

Классификация моделей по свойствам математической и компьютерной моделей

1. Статические модели, описывающие состояние системы в определенный момент времени (распределение нагрузки по длине балки; состав населения по возрастным группам);

Динамические модели, отражающие изменение во времени (движение краев колеблющейся балки; изменение рождаемости, смертности, численности населения по годам).

Классификация моделей по свойствам математической и компьютерной моделей

2. Детерминированные модели, позволяющие получить однозначно определенный результат (каким будет ток при заданных напряжении и сопротивлении);

Стохастические (вероятностные) модели, позволяющие предсказать только вероятность каждого возможного результата (пол ребенка; выигрыш в лотерею).

Классификация моделей по свойствам математической и компьютерной моделей

3. Непрерывные модели, в которых для переменных возможны любые значение из определенного интервала (скорость, путь, ток);

Дискретные модели, в которых переменная может принимать только одно из конечного множества значений (номер выбранного проекта или исполнителя работ).

Требования к модели

- 1. Наглядность построения.
- 2. Обозримость основных свойств и отношений.
- 3. Доступность ее для исследования или воспроизведения.
- 4. Простота исследования, воспроизведения.
- 5. Сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.

Свойства модели

- 1. Конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны.
- 2. <u>Упрощенность</u>: модель отображает только существенные стороны объекта.
- 3. <u>Приблизительность</u>: действительность отображается моделью грубо или приблизительно.
- 4. <u>Адекватность</u>: модель успешно описывает моделируемую систему.
- 5. <u>Информативность</u>: модель должна содержать достаточную информацию о системе в рамках гипотез, принятых при построении модели.

Виды моделирования

- 1. Концептуальное
- 2. Физическое
- 3. Структурно-функциональное
- 4. Математическое (логико-математическое)
- 5. Имитационное (программное)

1. Концептуальное моделирование

Совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков.

2. Физическое моделирование

Модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений.

<u>Например</u>, механическую систему можно заменить электрической.

3. Структурно-функциональное моделирование

Моделями являются схемы (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования.

4. Математическое моделирование

Моделирование, включая построение модели, осуществляется средствами математики и логики.

<u>Пример:</u>

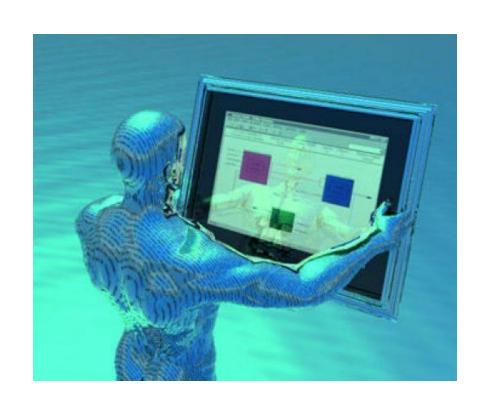
Математическая модель M, описывающая систему $S(x_1,x_2,...,x_n;R)$, имеет вид: $M=(z_1,z_2,...,z_m;Q)$, где $z_i \in Z$, i=1,2,...,n, Q, R — множества отношений над X — множеством входных, выходных сигналов и состояний системы и Z — множеством описаний, представлений элементов и подмножеств X, соответственно.

5. Имитационное моделирование

Логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализованный в виде программного комплекса для компьютера.

Разновидностью компьютерного моделирования является вычислительный эксперимент.

Экспертные системы (ЭС)


Если среда, в которой будет функционировать эксперт (человек или система), труднодоступна или представляет собой опасность для человеческой жизни или здоровья, то существенно возрастают затраты на доступ и обеспечение безопасности. Поэтому в таких ситуациях целесообразно использовать механизмы и вычислительные системы, реализующие программу некоторой экспертной системы.

Экспертные системы (ЭС)

Экспертная система – компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации.

Классификация ЭС по решаемой задаче

- •Интерпретация данных
- •Диагностирование
- •Мониторинг
- •Проектирование
- •Прогнозирование
- •Сводное Планирование
- •Обучение
- •Управление
- •Ремонт
- •Отладка

Экспертные системы (ЭС)

Ядро экспертной системы является некоторой программой, обрабатывающей знания, представленные в виде некоторых структурированных единиц – онтологий (например, с помощью языка разметки гипертекста HTML).

Сходство экспертных систем с прочими прикладными программами заключается в том, что они предназначены для решения определенного круга задач.

Основные функции компьютера при моделировании

- вспомогательное средство для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;
- средство постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;
- средство конструирования компьютерных обучающемоделирующих сред;
- <u>средство моделирования</u> для получения новых знаний;
- <u>"обучение"</u> новых моделей (самообучающиеся модели).

Операции над моделями

- 1. Линеаризация
- 2. Идентификация
- 3. Агрегирование
- 4. Декомпозиция
- 5. Сборка
- 6. Макетирование
- 7. Экспертиза
- 8. Вычислительный эксперимент

1. Линеаризация

Пусть M=M(X,Y,A), где X — множество входов,

Y – выходов, A – состояний системы. Схематически можно это изобразить: X => A => Y

Если X, Y, A – линейные пространства (множества), то система (модель) называется линейной. Другие системы (модели) – нелинейные. Нелинейные системы трудно поддаются исследованию, поэтому их часто линеаризуют – сводят к линейным каким-то образом.

2. Идентификация

Пусть M=M(X,Y,A), $A=\{a_i\}$, $a_i=(a_{i1},a_{i2},...,a_{ik})$ состояния объекта (системы). Если вектор а, зависит от некоторых неизвестных параметров, то задача идентификации (модели, параметров модели) состоит **определении** по В некоторым дополнительным условиям, например, экспериментальным данным, характеризующим состояние системы в некоторых случаях. Идентификация - решение задачи построения по результатам наблюдений математических моделей, описывающих адекватно поведение реальной системы.

3. Агрегирование

Операция состоит в преобразовании (сведении) модели к модели (моделям) меньшей размерности (X, Y, A).

4. Декомпозиция

Операция состоит в разделении системы (модели) на подсистемы (подмодели) с сохранением структур и принадлежности одних элементов и подсистем другим.

5. Сборка

Операция состоит в преобразовании системы, модели, реализующей поставленную цель из заданных или определяемых подмоделей (структурно связанных и устойчивых).

6. Макетирование

Эта операция состоит в апробации, исследовании структурной связности, сложности, устойчивости с помощью макетов или подмоделей упрощенного вида, у которых функциональная часть упрощена (хотя вход и выход подмоделей сохранены).

7. Экспертиза

Операция или процедура использования опыта, знаний, интуиции, интеллекта экспертов для исследования или моделирования плохо структурируемых, плохо формализуемых подсистем исследуемой системы.

8. Вычислительный эксперимент

Это эксперимент, осуществляемый с помощью модели на ЭВМ с целью распределения, прогноза тех или иных состояний системы, реакции на те или иные входные сигналы. Прибором эксперимента здесь является компьютер (и модель).

Основные функции компьютера при моделировании

- выполнять **роль** <u>вспомогательного средства</u> для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;
- выполнять **роль** <u>средства постановки и решения</u> новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;
- выполнять **роль** <u>средства конструирования</u> компьютерных обучающе-моделирующих сред;
- выполнять **роль** <u>средства моделирования</u> для получения новых знаний;
- выполнять **роль** <u>"обучения"</u> новых моделей (самообучающиеся модели).