

Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова

Кафедра A-1 «Ракетостроение»

Тема: «Обоснование характеристик зенитного ракетного комплекса для борьбы с беспилотными летательными аппаратами »

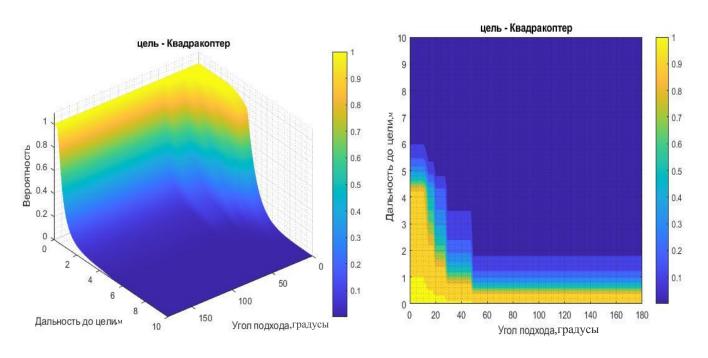
г. Санкт-Петербург 2021 г.

Цель – выбор и обоснование тактико-технических характеристики зенитно-ракетного комплекса для борьбы с беспилотными летательными аппаратами.

Задачи:

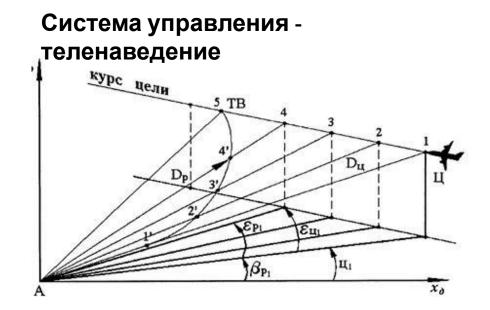
- Анализ имеющихся методов борьбы с БПЛА;
- Разработка математической модели взаимодействия ЗРК и БПЛА;
- Определение ТТХ ЗРК с помощью разработанной модели

Объект исследования – зенитно-ракетный комплекс.


Предмет исследования – зенитная управляемая ракета для поражения малоразмерных и низколетящих целей.

К разрабатываемому средству предъявлены следующие требования:

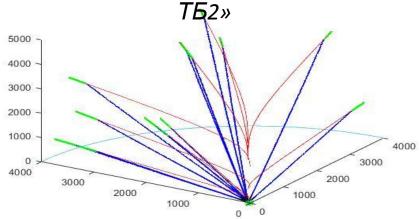
- Дальность полёта более 5 км;
- Масса полезной нагрузки не более 0,5 кг;
- Диаметр ограничен 90 мм;
- Длина ограничена 3000 мм.


Предварительно выбранные параметры

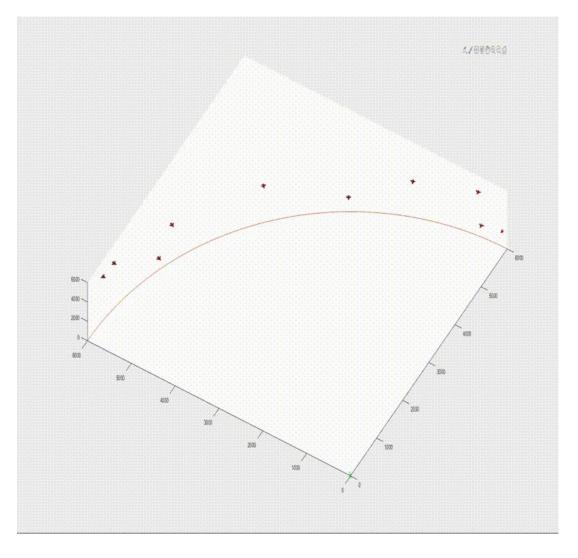
Боевая часть - осколочная

Зависимость вероятности поражения от расстояния до цели и углов подхода.

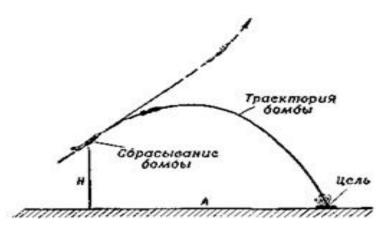
Слева – поверхность, справа –линии уровня.


Телеуправление – управление на расстоянии с помощью специальным образом закодированных сигналов управления.

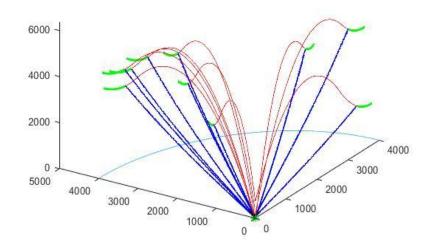
Метод наведения – метод трёх точек.


Цель самолетного типа

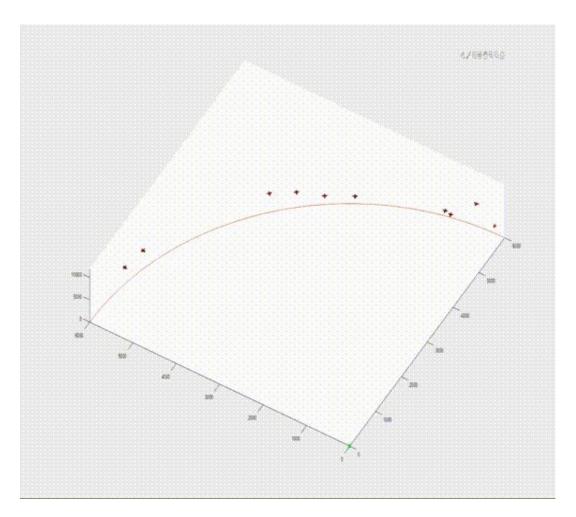
Внешний вид БПЛА «Байрактар



Траектория полета цели самолетного типа

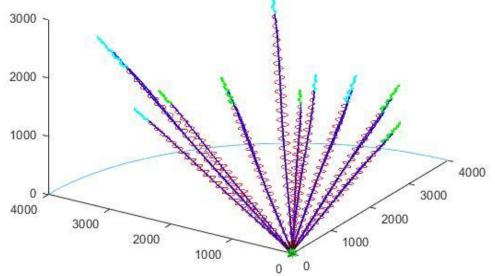


Моделирование полёта цели самолетного типа

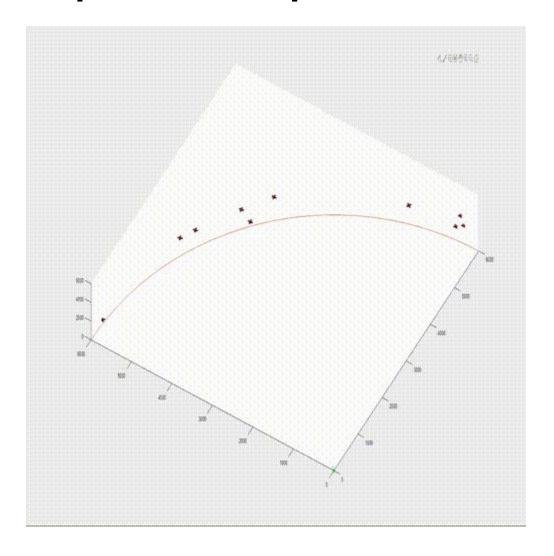

Цель самолетного типа с бомбами

Сброс бомб с кабрирования

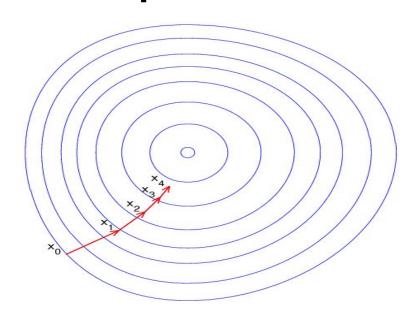
Траектория полета цели самолетного типа с бомбами



Моделирование полёта цели самолётного типа с бомбами **5**


Цель типа квадрокоптер

Пример БПЛА типа квадрокоптер



Траектория полёта цели типа квадрокоптер

Моделирование полёта цели типа квадрокоптер **6**

Проведение процесса исследования

Пример работы алгоритма

Метод оптимизации основан на методе градиентного спуска.

Метод делает несколько пробных шагов и движется в сторону наилучшего.

Тип БПЛА	К о л - в о П У	Колворакет в Пу	Кол- во одн овр еме нно летя щих раке т	Пре дел ьно доп уст им нар яд для пор аже ния цел и	Рад иус обна руж ения	Рас пол агае мые пер егру зки	Макси маль ная скоро сть ракет ы	Врем я стар тово го учас тка	Вр ем я реа кци и
Самолётный с бомбами	3	12	10	5	6000	15,00	419,01	4,00	4,00
Самолётный	3	12	7 T 06 T	7	2000	21,38	300,00	4,00	4,00
Квадрокопте р	4	12	9	ица по 10	лучен 2000	ных г 16,88	<i>TX</i> 300,00	8,73	6,36

Результаты работы

	TTX, оптимизированные для поражения БПЛА					
Тип цели	Самолётного типа	Самолётного типа с бомбами	Квадрокоптеров			
Самолётный	0,9896	0,8700	0,9582			
Самолётный с бомбами	0,5632	0,7542	0,4018			
Квадрокоптер	0,8970	0,4594	0,9876			
Среднее значение по всем целям таб	0,8166 пица вероятностей, полу	0,6945	0,7825			

наолица вероятностеи, полученных в результате исследования

К о л- в о П у	Кол- во ракет в ПУ	ИССЛЕОО Кол-во одновреме нно летящих ракет	Предельно допустимый наряд для поражения цели	Радиус обнаружен ия	Располаг аемые перегруз ки	Максим альная скорост ь ракеты	Время старто вого участк а	Вре мя реа кци и
3	12	7 Табл	лица выбранных Пица выбранных	2000 тактико-техн	21,38 HUYECKUX	300,00	4,00	4,00

характеристик

Результаты проверки через ППП САПР ЗУР

- Ракета телеуправляемая, метод наведения трёх точек;
- Аэродинамическая схема- утка;
- Рулевой привод электромашинный;
- Боевая часть- осколочная, масса 0,27 кг;
- Длина ракеты 2,97 м;
- Калибр 40 мм;
- Масса ракеты 18 кг;
- Наклонная дальность 6 км.

Выводы по работе

В ходе работы были выполнены следующие задачи:

- Анализ имеющихся методов борьбы с БПЛА;
- Разработка математической модели боя ЗРК с БПЛА;
- Выбор и обоснование ТТХ ЗРК для борьбы с маломерными низколетящими БПЛА;
- Оценка стоимости исследования;
- •Выработаны методы для обеспечения безопасности жизнедеятельности при проведении исследования.