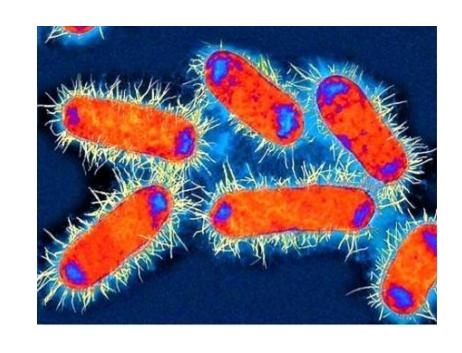
«Медицинская биофизика» НМГУ


Бактериология: методы измерений и регистрации

Общая бактериология:

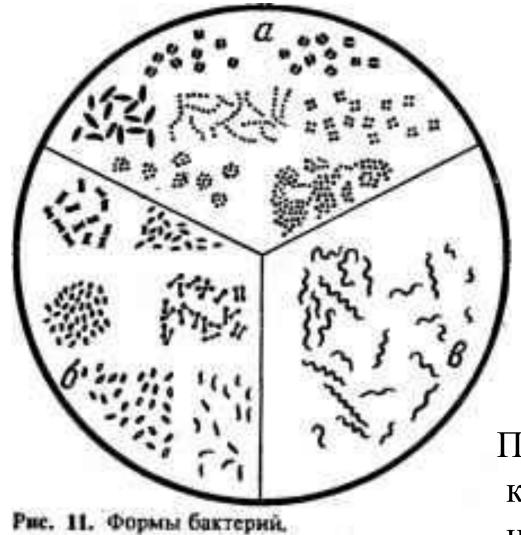
- морфология
- •биохимия
- •общая изменчивость и наследственность

Медицинская бактериология:

- методы детекции и выделения
- •методы воздействия (лечения)

До 1977 термины прокариоты и бактерии были тождественными

- •количество прокариот на Земле оценивается в 5·10³⁰
- •суммарная биомасса прокариот составляет 350—550 млрд т. (масса человечества около 0.3 млрд. т.)
- •в кишечнике человека в норме обитает от 300 до 1000 видов бактерий общей массой до 1 кг


История изучения

Микроскоп Левенгука

- •в 1676 г. бактерии впервые увидел и описал голландский натуралист Антони ван Левенгук с помощью микроскопа с увеличением x250.
- •название «бактерии» ввёл в употребление в 1828 году Христиан Эренберг
- •В 1850-х годах Луи Пастер открыл их болезнетворные свойства. Изучал физиологию и метаболизм
- •Роберт Кох сформулированы общие принципы определения возбудителя болезни. В 1905 году
 - Нобелевская премия (туберкулез)
- •Детальное изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е годы

Общая бактериология: морфология

шаровилиые; 6 — палочковидные

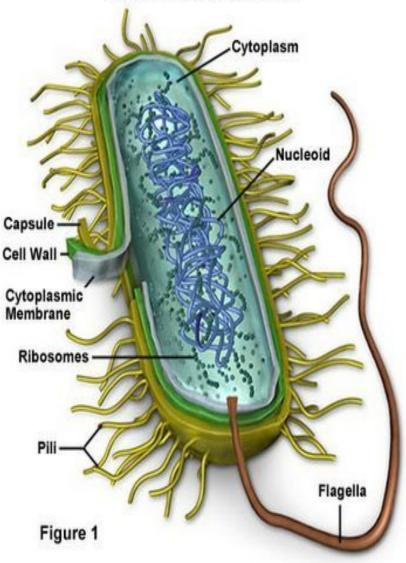
Формы бактерий:

- •шаровидные
- •палочкообразные
- •нитевидные

Известно: около 10000 видов

Предполагается, что общее количество видов бактерий на Земле более 1000000!


Размеры

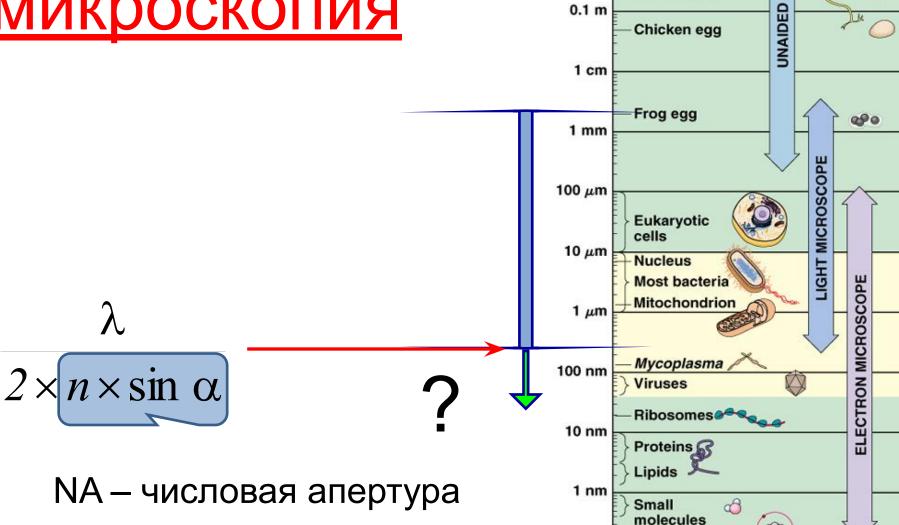

Типичные размеры 0.5-5 мкм

Самая крупная Thiomargarita namibiensis - 750 мкм (0,75 мм) Самая маленькая Mycoplasma mycoides - 0,1—0,25 мкм

Теория: сферическая клетка диаметром менее 0,15—0,20 мкм становится неспособной к самостоятельному воспроизведению

Общая структура бактерий

- Нуклеоид ДНК, РНК, белки (отсутствует мембрана, гистоны, не делится митозом)
- Цитоплазма –
- а) рибосомы синтез белка
- б) плазмиды генетические функции
- в) включения запас питательных веществ
- Цитоплазматическая мембрана транспорт питательных твеществ
- Мезосомы участие в деление
- Клеточная стенка стабильность формы
 - Жгутики перемещение бактерий


Стандартные методики детекции бактерий

Микроскопия

- •световая
- •электронная
- •флуоресцентная (окрашивание)

Оптическая микроскопия

@Addison Wesley Longman, Inc.

0.1 nm

Atoms

10 m

1 m

Human height

nerve and muscle cells

Length of some

EYE

Световая микроскопия

- Типы микроскопов
 - микроскоп прошедшего света
 - темнопольный микроскоп
 - фазовоконтрастный микроскоп
 - флуоресцентный микроскоп

"Нестандартные" методики детекции бактерий

Основаны на детектировании сигналов, строго специфических к различным штаммам бактерий

- •ПЦР (уникальные ДНК и РНК-последовательности)
- •Масс-спектрометрия (концентрация определенных жирных кислот)
- •Иммунологические методы (антигены к специфическим рецепторам, иммунофлуоресценция)
- •Конечные продукты метаболизма
- •Различные бионсенсоры

Стандартные методики детекции роста бактерий

- Измерение оптической плотности раствора (суспензия)
- Бак посевы (рост колоний на поверхности)

Стандартные методики определения чувствительности к антибактериальным препаратам (АБП)

- Метод серийных разведений
- Диффузионный метод

- (+) Простота, низкая стоимость
- (-) Времязатратность. Эти методы требуют, чтобы прошло несколько циклов деления (анализ длится несколько дней)

Метод серийных разведений

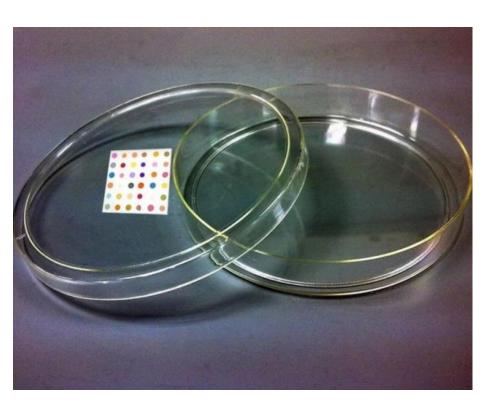
• Минимальная подавляющая концентрация (МПК), или minimal inhibitory concentration (MIC) – это самая низкая концентрация антибиотика, выражаемая в мкг/мл, при которой полностью подавляется видимый рост микроорганизма.

Диффузионный метод определения чувствительности к АБП

Нет зоны подавления роста микроорганизма вокруг диска с антибиотиком: микроорганизм устойчив к антибиотику (3)

"Ускоренные" методики определения чувствительности к АБП

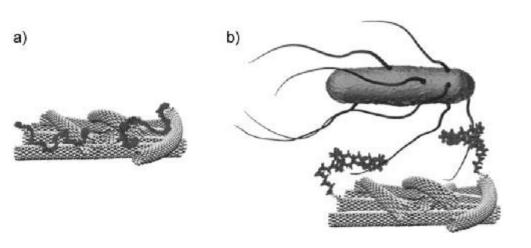
Для чего? В исследованиях Barenfanger показано, что сокращение среднего времени исследования от 44,4 до 39,2 ч. сопровождалось сокращением койкодня с 12,6 до 10,7 суток, снижением средней стоимости лечения пациента с 6677 до 4927 долларов США и летальности – от 9,6% до 7,9%


Исследуются чистые культуры, время анализа — несколько часов


- 1)выявлении изменений ферментативной активности бактерий;
 - Устойчивые к данному антибиотику микроорганизмы усваивают глюкозу, что проявляется изменением кислотно-щелочного потенциала (рН) среды.
 - 2) выявлении изменений окислительно-восстановительного потенциала среды развивающимися микроорганизмами;
 - 3) цитоморфологической оценке изменений бактериальных клеток и формирования микроколоний;
 - 4) определении изменений оптической плотности среды растущей популяцией или включения радиоизотопов в микробные клетки;
 - 5) использовании специальных питательных сред с ростовыми стимуляторами .

Новые методы "быстрого" обнаружения бактерий

Ken Suslick, 2011 –

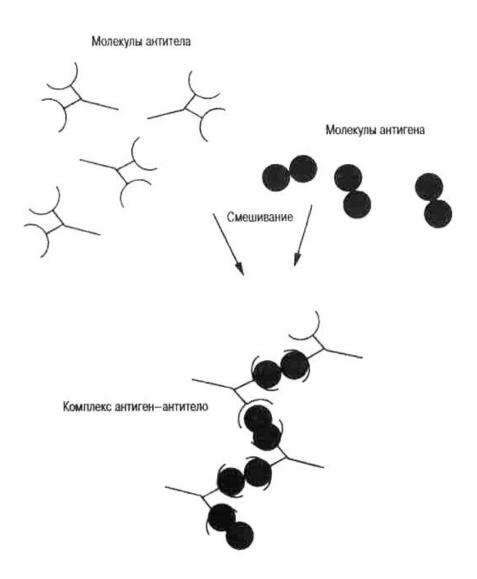

- •определение продуктов метаболизма бактерий по 36 маркерам, детектирование "запаха" бактерий.
- •Тест длится несколько часов

Новые методы "быстрого" обнаружения бактерий

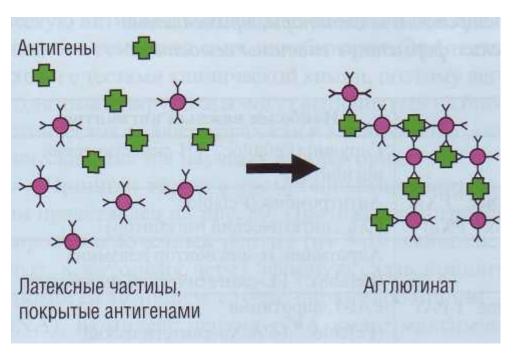
Universitat Rovira i Virgili, г. Tarragon(Испания), 2008 — ультрачувствительные аптосенсоры на основе углеродных нанотрубок на примере *Salmonella typhi*

Чувствительность — несколько клеток в 1 мл Время анализа — несколько минут

Серология


«Серология» = «serum» (сыворотка) +«logos» (знание)

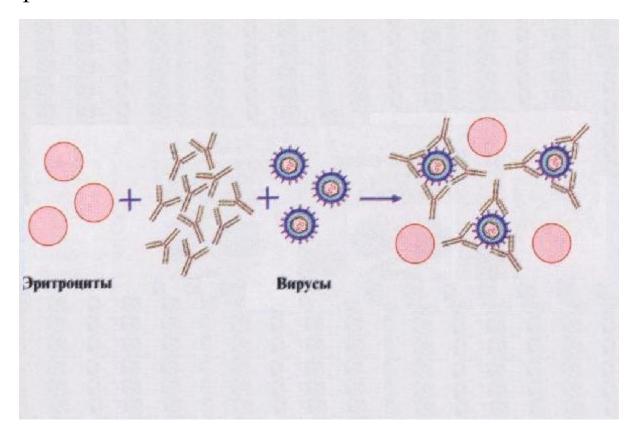
Серология - раздел иммунологии, изучающий взаимодействие антител сыворотки с антигенами.


Серологические реакции:

- 1. Реакция преципитации.
- 2. Реакция агглютинации.
- 3. Реакция нейтрализации.
- 4. Реакция с участием комплемента.
- 5. Реакция с использованием меченых антител или антигенов.

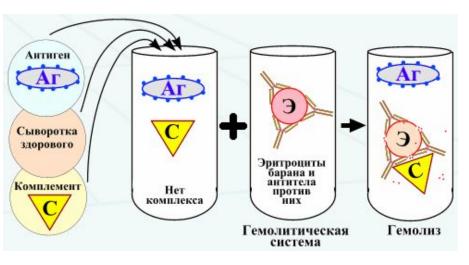
Реакция преципитации.

Реакция агглютинации


Сила трения для шара в жидкости Формула Стокса-Эйнштейна:

$$F = 6\pi \eta R u$$

Чем больше размер тела, тем быстрее оно оседает!


Реакция нейтрализации

Реакция нейтрализации основана на способности антител иммунной сыворотки нейтрализовать повреждающее действие микроорганизмов или их токсинов на чувствительные клетки или ткани. При отсутствии повреждающего эффекта смеси антител и микробов или их токсинов на культуру клеток говорят о специфичности взаимодействия комплекса антиген-антитело.

Реакция с участием комплемента

Реакции с участием комплемента основаны на активации комплемента в результате присоединения его к комплексу антиген-антитело. Если комплекс антиген-антитело не образуется, то комплемент присоединяется к комплексу эритроцит-антиэритроцитарное антитело, вызывая тем самым гемолиз эритроцитов

Реакция с использованием меченых антител или антигенов.

Иммунофлуоресцентный метод

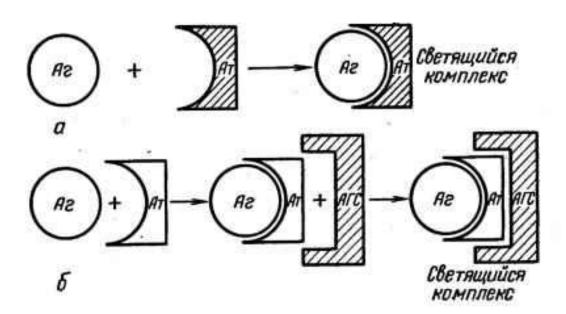
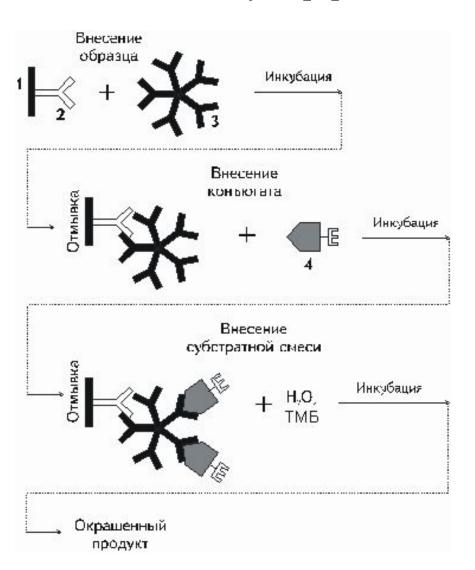
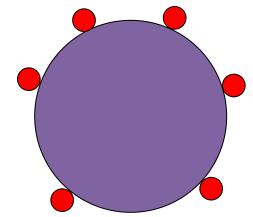
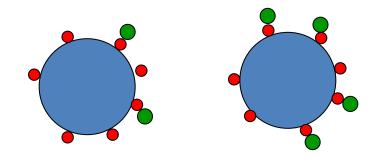



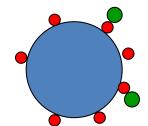
Рис. 55. Иммунофлюоресцентный метод Кунсв (схемв), а — прямой метод; 6 — непрямой метод; АГ — антиген; Ат — антитело; АГС — антиглобулиновая сыворотка,


Реакция с использованием меченых антител или антигенов.

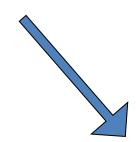
Иммуноферментный анализ – ИФА (ELISA)



Принципы иммуноагглютинации взгляд физика

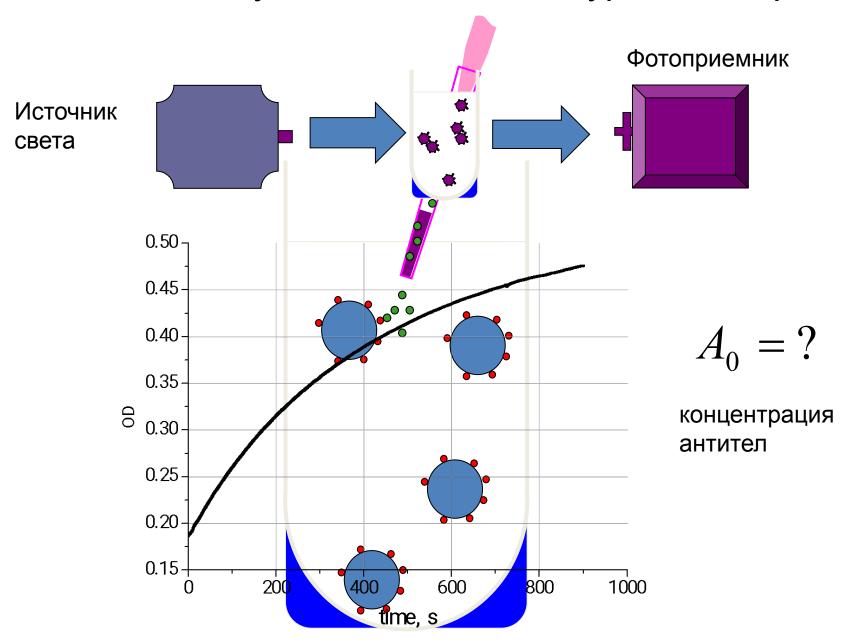

1. Образование лиганд-рецепторных комплексов

2. Образование агрегатов


Как правило, первая стадия практически "мгновенна" по сравнению со второй

Детектирование процесса иммуноагглютинации

Измерение продуктов реакции



На ансамбле:

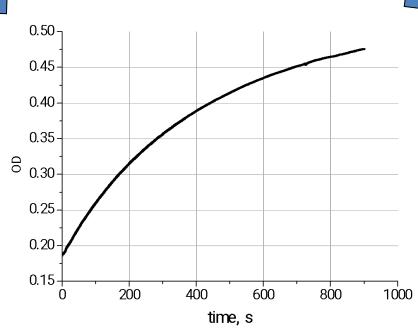
турбидиметрия нефелометрия Одиночные частицы:

микроскопия проточная цитометрия

Иммуноагглютинация: турбидиметрия

Прямая задача

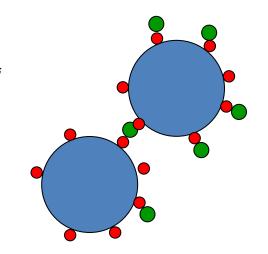
Биокинетика


 $C_i(A_0,K,r_0,N,t)$

Оптика

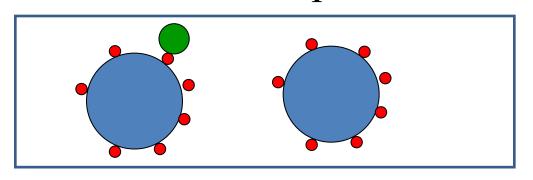
$$OD(C_i, r_0, n, d_f)$$

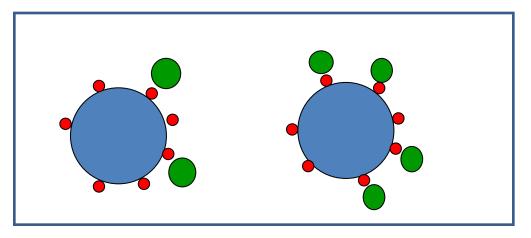
Обратная задача

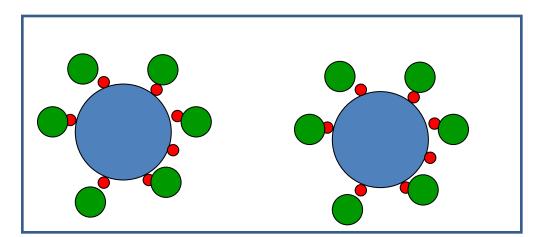

$$A_0 = ?$$

Уравнение Смолуховского

$$\frac{dP_i}{dt} = \frac{1}{2} \sum_{j=1}^{i-1} k(j, i-j) P_j P_{i-j} - \sum_{j=1}^{\infty} k(i, j) P_i P_j$$


k(i,j) - константа скорости


Главный вопрос: k(i,j) = ?

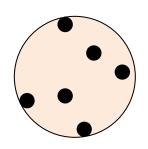

Скорость агглютинации

Недостаток антигенов

 $Cp_iK = \alpha p(1-p)_{CTBO}$ р антител и антигенов рецепторов

Избыток антигенов

Константа скорости k(1,1)


$$k = k_D F$$

$$\frac{1}{F} = 1 + \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_{12}}$$

$$F_2 = \frac{3\pi}{16} N_2 f_2^{1/2} \left(1 + \frac{3R_1}{4R_2} \left(1 + \frac{R_1}{R_2} \right) \right)^{1/2}$$

$$F_1 = \frac{3\pi}{16} N_1 f_1^{1/2} \left(1 + \frac{3R_2}{4R_1} \left(1 + \frac{R_2}{R_1} \right) \right)^{1/2}$$

$$F_{12} = h \left(\sqrt{\frac{f_1}{f_2}} \right) N_1 N_2 \left(f_1 \sqrt{f_2} + f_2 \sqrt{f_1} \right)$$

J. Chem. Phys. 141, 064309 (2014)

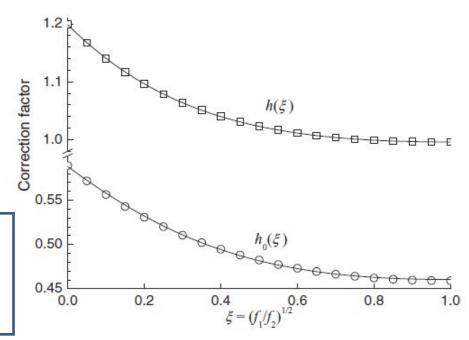
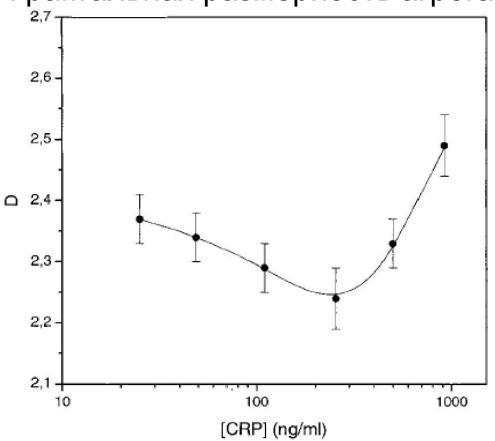



FIG. 4. The correction factors $h(\xi)$ and $h_0(\xi)$: dots – calculated by odirect numerical integration; solid line – approximation (30).

Оптика: расчет уравнений Максвелла с помощью суперкомпьютеров

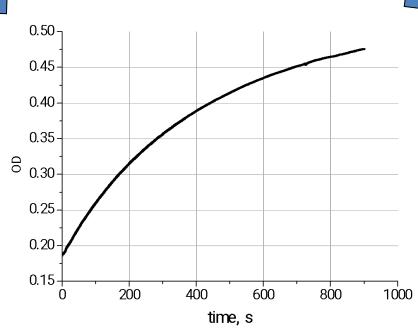
Фрактальная размерность агрегатов

Figure 5. Fractal dimensions as a function of CRP concentration for the antibody—latex complex.

Molina-Bolivar J.A. et. al. Fractal aggregates induced by antigen-antybody interaction // 2001 Langmuir v.17, p.2514-2520

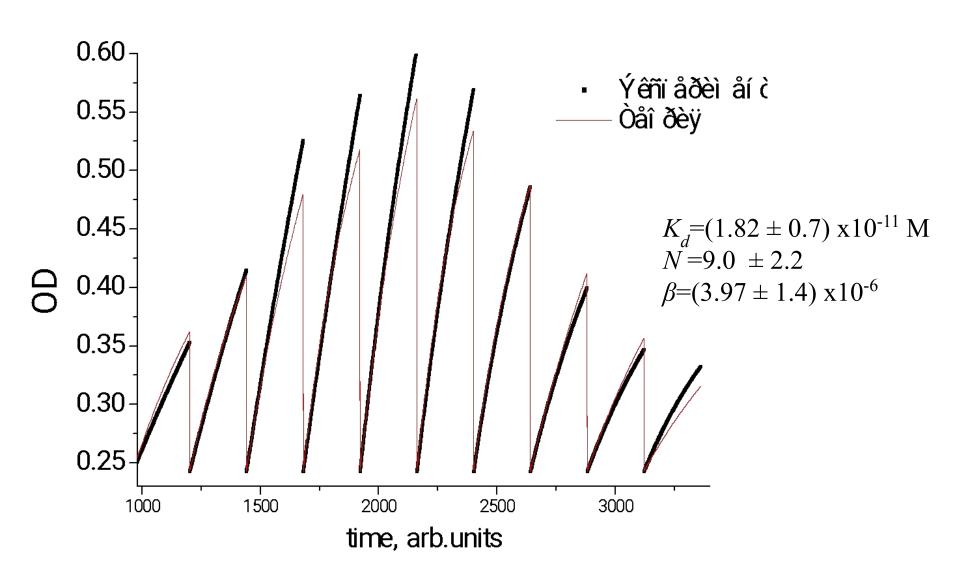
Прямая задача

Биокинетика


 $C_i(A_0,K,r_0,N,t)$

Оптика

$$OD(C_i, r_0, n, d_f)$$



Обратная задача

$$A_0 = ?$$

Агглютинация: теория и эксперимент

