способ химико-термической обработки стального изделия с электролитным нагревом

Изобретение относится к области металлургии, а именно к химико-термической обработке стального изделия с электролитным нагревом, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин.

Классы МПК:	С23С8/40 использование жидкостей, например соляных ванн, жидких суспензий				
Автор(ы):		евич (RU), Дьяков Илья Геннадьевич (RU), Наумов Александр Рудольфович (RU), Шадрин Жиров Александр Владимирович (RU), Кусманов Сергей Александрович (RU), Мухачева RU)			
Патентообладатель(и):	Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Костромской государственный университет им. Н.А. Некрасова" (RU)				
Приоритеты:	подача заявки: 2012-12-11	публикация патента: 20.01.2016			

Осуществляют подачу напряжения на стальное изделие, погружают стальное изделие в электролит и осуществляют нагрев и диффузионное насыщение упомянутого изделия в парогазовой среде. На стальное изделие, являющееся анодом, подают постоянное напряжение 180-280 В, упомянутое изделие погружают в проточный и охлаждаемый электролит со скоростью 0,5-2 мм/с, разогрев и насыщение проводят при продольном обтекании изделия при величинах расхода электролита 1,0-10 л/мин. Обеспечивается уменьшение шероховатости стальной детали при скоростной химикотермической обработке в водных электролитах.

Пример 1. Обработка изделий по способу, изложенному в аналоге

Обработка чугуна велась в охлаждаемом электролите при катодной полярности изделия импульсами напряжения 350 В при частоте 100 Гц и величине, обратной скважности, 50%. Условия обработки и полученные результаты приведены в таблице.

Пример 2. Обработка изделий по способу, изложенному в прототипе

Обработка технического железа велась в охлаждаемом электролите при катодной полярности изделия и постоянном напряжении. Условия обработки и полученные результаты приведены в таблице.

Ni	Примеры	Напряжен ие, В	Темпера тура, °С	Составы электролитов (водные растворы)	Время обработк и, мин	Толщина слоя, мкм	Поверхност ная твердость, МПа	Исходная шероховатос ть, мкм	Полученная шероховатость, мкм
1	Нитроцементация чугуна (аналог)	350		Ацетамид, глицерин, хлорид натрия	1	20	5,54	0,06	0,97
2	Цементация технического железа (прототип)	240	950	10% хлорида аммония, 20% глицерина	30	160	6,85	0,179	0,819
3	Цементация стали 20 (предлагаемый способ)	240	900	10% хлорида аммония, 10% глицерина	10	150	6,3	1,2	0,16
4	Термообработка нитепроводника (сталь 60) (предлагаемый способ	180	900	5% хлорида аммония, 5% глицерина	5		6,4	0,62	0,22

Из таблицы следует, что техническое решение поставленной задачи, а именно снижение шероховатости стальной детали в процессе электролитного нагрева, достигается при анодной полярности упомянутой детали. Микронеровности поверхности сглаживаются благодаря анодному растворению и отсутствию электрических разрядов, характерных для систем с металлическим катодом. Для достижения температур, необходимых для скоростной цементации, реализация анодного нагрева требует продольного обтекания изделия охлаждаемым электролитом.

Источник: http://www.freepatent.ru/patents/2572663