

Производные функции нескольких переменных (часть 1)

Введение в математический анализ

План

- 1. Разберём ДЗ
- 2. Несколько слов о математическом моделировании.
- 3. Функции 2-х переменных; функции многих переменных.
- 4. Частные производные, дифференциалы функций.
- 5. Экстремум функции 2-х переменных.
- 6. Аппроксимация. МНК.

Разбор ДЗ по теме «Производные одной переменной»

Задание 1 $\left(\sin x \cdot \cos x\right)' = \sin x' \cos(x) + \cos x' \sin x = \\ = \cos^2 x - \sin^2 x$

$$\left(\ln(2x+1)^3
ight)' = (2x+1)^{-3}\cdot 3\cdot (2x+1)^2\cdot 2 = rac{6}{2x+1}$$
 $\left(\ln(2x+1)^3
ight)' = 3\Big(\ln(2x+1)\Big)' = rac{6}{2x+1}$

$$egin{aligned} \left(\sqrt{\sin^2(\ln(x^3))}
ight)' &= rac{1}{2\sqrt{\sin^2(\ln(x^3))}} \cdot (\sin^2(\ln(x^3)))' = \ &= rac{1}{2\sqrt{\sin^2(\ln(x^3))}} \cdot 2\sin(\ln(x^3)) \cdot (\sin(\ln(x^3)))' = \ &= rac{1}{2\sqrt{\sin^2(\ln(x^3))}} \cdot 2\sin(\ln(x^3)) \cdot \cos(\ln(x^3)) \cdot (\ln(x^3))' = \ &= rac{\sin(\ln(x^3))}{\sqrt{\sin^2(\ln(x^3))}} \cdot \cos(\ln(x^3)) \cdot rac{1}{x^3} \cdot (x^3)' = rac{\sin(\ln(x^3))}{\sqrt{\sin^2(\ln(x^3))}} \cdot \cos(\ln(x^3)) \cdot rac{3x^2}{x^3} \end{aligned}$$

$$\left(\frac{x^4}{\ln(x)}\right)' = \frac{4x^3 \ln(x) - x^3}{\ln^2(x)}$$

Задание 2

$$egin{align} f(x) &= \cos(x^2+3x), \, x_0 = \sqrt{\pi} \ f'(x) &= -\sin(x^2+3x) \cdot (2x+3) \ f'(\sqrt{\pi}) &= -\sin((\sqrt{\pi})^2+3\sqrt{\pi}) \cdot (2\sqrt{\pi}+3) \ \end{cases}$$

$$\sin(\pi + a) = -\sin a$$

= - sin(pi + 3*sqrt(pi))(2*sqrt(pi)+3) = = sin(3*sqrt(pi))(2*sqrt(pi)+3) = = -5,38 (с округлением)

7

Задание 3

$$\left(\frac{x^3 - x^2 - x - 1}{1 + 2x + 3x^2 - 4x^3}\right)\Big|_{x=0}^{r} = \left(\frac{(3x^2 - 2x - 1) \cdot (1 + 2x + 3x^2 - 4x^3) - (x^3 - x^2 - x - 1) \cdot (2 + 6x - 12x^2)}{(1 + 2x + 3x^2 - 4x^3)^2}\right)\Big|_{x=0}$$

$$egin{align} f(x) &= rac{x^3 - x^2 - x - 1}{1 + 2x + 3x^2 - 4x^3}, \, x_0 \, = \, 0 \ & \ f(x) &= rac{a(x)}{b(x)} & a(0) = -1, b(0) = 1 \ & \ f'(0) &= rac{a'(0)b(0) - a(0)b'(0)}{b^2(0)} & a'(0) = -1, b(0) = 2 \ & \ \end{array}$$

Задание 4

$$f'(x)=(\sqrt{3x}\cdot \ln x)'=(\sqrt{3x})'\cdot \ln x+\sqrt{3x}\cdot (\ln x)'=
onumber \ =rac{3}{2\sqrt{(3x)}}\cdot \ln x+\sqrt{3x}\cdot rac{1}{x}ig|_{x=1}=rac{3}{2\sqrt{(3x)}}\cdot \ln 1+\sqrt{3}\cdot rac{1}{1}=\sqrt{3}
onumber \ tg(lpha)=\sqrt{3}\Rightarrow lpha=arctg(\sqrt{3})=rac{\pi}{3}$$

Функции многих переменных. Где применяется математическое моделирование?

Модели потребительского выбора, фирмы (производственные функции); экономического роста; равновесия на товарных, факторных и финансовых рынках и т. д.

Механика жидкости - нефтедобывающая промышленность.

Математическое моделирование – зачем?

- Упрощенно описать реальность.
- Учесть ключевые факторы.
- Принять решение.
- Математическая модель основа для принятия решения.

Задачи математического программирования

Решают: проблему выбора, оптимизации.

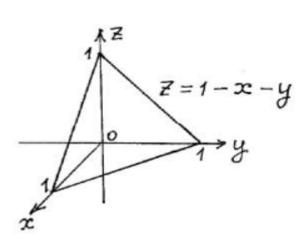
У истоков: Канторович, Кун, Таккер.

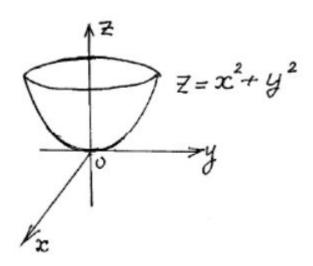
Функция 2-х переменных: **определение**.

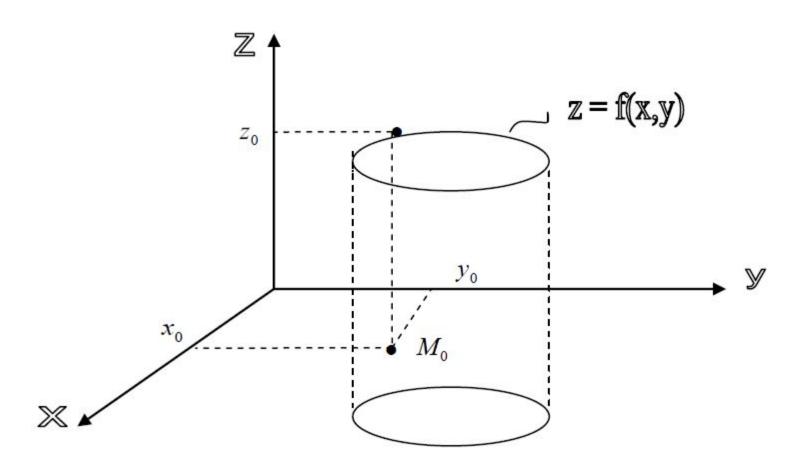
Если каждой паре независимых друг от друга переменных \mathbf{X} , \mathbf{y} из некоторого множества \mathbf{D} ставится в соответствие переменная величина \mathbf{Z} , то \mathbf{z} называется функцией двух переменных.

$$z = f(x,y)$$
 или $z = z(x,y)$

График функции - поверхность

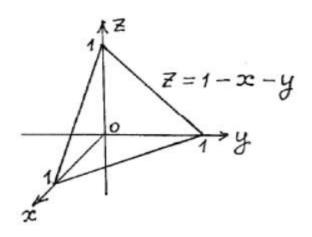


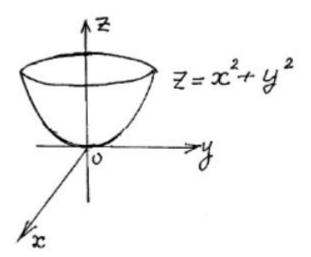




Область определения функции 2-х переменных D(x;y)

Для функции двух переменных множество \mathbf{D} представляет собой множество точек координатной плоскости \mathbf{xOy} . В частном случае, это будет часть плоскости \mathbf{xOy} .





Примеры поверхностей 2-го порядка

			Ť		
1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Уравнение эллипсоида	y 2.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ Уравнение мнимого эллипсоида	3.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ Уравнение мнимого конуса
4.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Уравнение однополостного гиперболоида	5.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ Уравнение двуполостного гиперболоида	6.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ Уравнение конуса
7.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ Уравнение эллиптического параболоида	9 8.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$ Уравнение гиперболического параболоида	9.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Уравнение эллиптического цилиндра
10.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ Уравнение мнимого эллиптического цилиндра	y 11.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ Уравнение пары мнимых пересекающихся плоскостей x	12.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Уравнение гиперболического цилиндра
13.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ Уравнение пары пересекающихся плоскостей) 14.	$y^2 = 2px$ Уравнение параболического цилиндра	15.	$y^2 - b^2 = 0$ Уравнение пары параллельных плоскостей
16.	$y^2 + b^2 = 0$ Уравнение пары мнимых параллельных плоскостей	17.	$y^2 = 0$ Уравнение пары совпадающих плоскостей	100	Для всех уравнений $a>0,\ b>0,\ c>0,\ p>0$ Для уравнений 1 и 2 $a\geq b\geq c$ ля уравнений $3,4,5,6,7,9,10$ $a\geq b$

Пример

Найти область определения функции

$$z = \arccos\left(x^2 + y^2\right)$$
.

Пример

Найти область определения функции

$$z = \arccos\left(x^2 + y^2\right)$$
.

Арккосинус ($y = \arccos x$) — это функция, обратная к косинусу ($x = \cos y$). Он имеет область определения $-1 \le x \le 1$ и множество значений $0 \le y \le \pi$.

$$\cos(\arccos x) = x \quad (-1 \leqslant x \leqslant 1)$$

$$\arccos(\cos x) = x \quad (0 \leqslant x \leqslant \pi)$$

Пример

Найти область определения функции

$$z = \arccos\left(x^2 + y^2\right)$$
.

Арккосинус ($y = \arccos x$) — это функция, обратная к косинусу ($x = \cos y$). Он имеет область определения $-1 \le x \le 1$ и множество значений $0 \le y \le \pi$.

$$cos(arccos x) = x \quad (-1 \le x \le 1)$$

$$\arccos(\cos x) = x \quad (0 \leqslant x \leqslant \pi)$$

$$x^2 + y^2 \le 1$$

Круг радиуса 1 в центре с началом координат

Функция многих переменных: **определение**.

Если каждой совокупности независимых друг от друга переменных x,y,z,...,t из некоторого множества D ставится в соответствие определенное значение переменной величины W, то W называется функцией и переменных.

$$W = W(x, y, z, \dots t)$$

Частные производные 1-го порядка

$$z = f(x, y)$$

 Δx - «дельта икс», приращение переменной х

$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

 Δy - «дельта игрек», приращение переменной у

$$\frac{\partial z}{\partial y} = f_y' = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$

Этот предел называется *частной производной* (первого порядка) данной функции по переменной x в точке (x, y) и обозначается $\frac{\partial z}{\partial x}$ или $f_x'(x, y)$. Точно так же определяется частная производная этой функции по переменной y и обозначается $\frac{\partial z}{\partial y}$ или $f_y'(x, y)$.

$$y'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Определение производной функции одной переменной (для сравнения)

Вычисление частных производных

Частные производные вычисляются по обычным правилам и формулам дифференцирования, при этом все переменные, кроме одной, рассматриваются как постоянные («замораживаются»).

Физический смысл

Частные производные показывают скорость изменения функции по направлению роста оси. U_x' - по оси $X,\ U_y'$ - по оси Y и т.д..

Сравнение с неявными функциями

$$F(x,y(x))=0$$

$$x^3 + y^3 + \cos y \cdot \sin^4 x = 0$$

$$3x^2 + 3y^2 \cdot y' - \sin y \cdot y' \cdot \sin^4 x + \cos y \cdot 4\sin^3 x \cdot \cos x = 0$$

$$(3y^2 - \sin y \cdot \sin^4 x) \cdot y' = -\cos y \cdot 4\sin^3 x \cdot \cos x - 3x^2$$

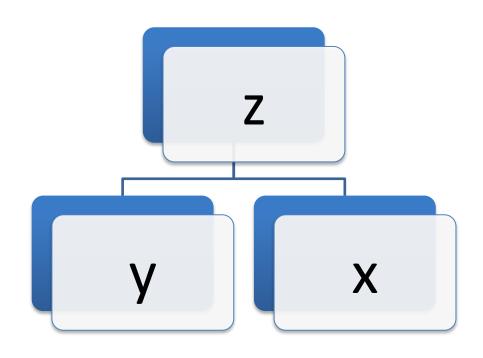
$$y' = -\frac{\cos y \cdot 4\sin^3 x \cdot \cos x + 3x^2}{3y^2 - \sin y \cdot \sin^4 x}$$

В случае неявной функции у зависит от х: y(x) В случае функции нескольких переменных – нет: z(x,y)

Разница между неявными функциями и функциями нескольких переменных

Неявная функция

Функция двух переменных



Вычислить:

$$z = x^2y^3 + 4x^3y^2 + 5x - 4y + 1.$$

Вычисление частных

UNVIADVUIII IV

$$z = x^2y^3 + 4x^3y^2 + 5x - 4y + 1.$$

$$z = x^2y^3 + 4x^3y^2 + 5x - 4y + 1$$

$$\frac{\partial z}{\partial x} = y^3 \cdot 2x + 4y^2 \cdot 3x^2 + 5$$

$$\frac{\partial z}{\partial x} = z'_x = 2xy^3 + 12x^2y^2 + 5$$

$$z = x^2y^3 + 4x^3y^2 + 5x - 4y + 1.$$

$$\frac{\partial z}{\partial y} =$$

$$z_y' = 3x^2y^2 + 8x^3y - 4$$

Частный дифференциал функции многих переменных W(x,y,z)

Частным дифференциалом функции многих переменных называется величина, обозначаемая $\mathbf{d}_{\mathbf{x}}\mathbf{W}$ и равная произведению соответствующей частной производной на приращение соответствующей независимой переменной, то есть

$$d_x W = W'_x \Delta x$$

$$d_y W = W'_y \Delta y$$

$$d_z W = W'_z \Delta z$$

$$d_z W = W'_z dz$$

$$d_z W = W'_z dz$$

dx – «дифференциал икс» - произвольное бесконечно малое приращение переменной величины

Частный дифференциал не путаем с частной производной функции многих переменных

Частный дифференциал равен **частной производной** умноженной на приращение

Полный дифференциал функции многих переменных W(x,y,z)

Полным дифференциалом функции многих переменных называется величина, равная сумме всех ее частных дифференциалов, то есть $dW = d_x W + d_v W + d_z W$

$$dW = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial y} dy + \frac{\partial W}{\partial z} dz$$

Полный дифференциал функции многих переменных W(x,y,z)

Полным дифференциалом функции многих переменных называется величина, равная сумме всех ее частных дифференциалов, то есть $dW = d_x W + d_y W + d_z W$

$$dW = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial y} dy + \frac{\partial W}{\partial z} dz$$

$$W = \sin(2x) + x \cdot \cos(5y) - tg(7z)$$

dW =
dW (0;0;0) =

$$W = \sin(2x) + x \cdot \cos(5y) - tg(7z)$$

 $dW =$
 $dW (0;0;0) =$

$$W = \sin(2x) + x \cdot \cos(5y) - tg(7z)$$

 $dW =$
 $dW (0;0;0) =$

$$dW = W'(x)dx+W'(y)dy+W'(z)dz$$

$$dW=(2\cos(2x)+\cos(5y))dx-5x\sin(5y)dy-(7/(\cos(7z)^2)dz$$

$$dW(0;0;0)=3dx-7dz$$

dW(0;0;0) = 3dx-7dz

Интерпретация

В точке (0;0;0) при бесконечно малых приращениях x, y и z главную линейную часть приращения функции W можно вычислить по формуле.

Частные производные 2-го

$$z = \ln(xy) + xy^2$$

1-е производные:
$$z'_x = \frac{1}{xy} \cdot y + y^2 = \frac{1}{x} + y^2$$

$$z'_y = \frac{1}{xy} \cdot x + 2xy = \frac{1}{y} + 2xy$$

Частные производные 2-го

$$z = \ln(xy) + xy^2$$

1-е производные:
$$z'_x = \frac{1}{xy} \cdot y + y^2 = \frac{1}{x} + y^2$$

$$z'_y = \frac{1}{xy} \cdot x + 2xy = \frac{1}{y} + 2xy$$

2-е производные:
$$z''_{xx} = -\frac{1}{x^2}$$

$$z''_{yy} = -\frac{1}{v^2} + 2x$$

Смешанные производные: $z''_{xy} = z''_{yx} = 2y$

$$U(x,y) = 5x^2 + 7y^3 \sin x - \ln x \cdot tg y + 10y - 13$$

$$U(x,y) = 5x^{2} + 7y^{3} \sin x - \ln x \cdot \operatorname{tg} y + 10y - 13$$

$$U'_{x} = 10x + 7y^{3} \cos x - \frac{\operatorname{tg} y}{x}$$

$$U'_{y} = 21y^{2} \sin x - \frac{\ln x}{\cos^{2} y} + 10$$

$$U''_{xx} = 10 - 7y^{3} \sin x + \frac{\operatorname{tg} y}{x^{2}}$$

$$U''_{yy} = 42y \sin x - \frac{2 \ln x \cdot \sin y}{\cos^{3} y}$$

$$U(x,y) = 5x^2 + 7y^3 \sin x - \ln x \cdot tg y + 10y - 13$$

$$U_x' = 10x + 7y^3 \cos x - \frac{\operatorname{tg} y}{x}$$

$$U_y' = 21y^2 \sin x - \frac{\ln x}{\cos^2 y} + 10$$

$$U_{xy}'' = 21y^2 \cos x - \frac{1}{x \cos^2 y}$$

$$U_{yx}'' = 21y^2 \cos x - \frac{1}{x \cos^2 y}$$

$$U(x, y, z) = 3y^3z^2 + 5x^5 \ln z - \sin x \cdot \cos y + 11y - 9x + 3z - 20$$

$$U'_x = 25x^4 \ln z - \cos x \cdot \cos y - 9$$

$$U'_y = 9y^2z^2 + \sin x \cdot \sin y + 11$$

$$U'_z = 6y^3z + \frac{5x^5}{z} + 3$$

$$U(x, y, z) = 3y^{3}z^{2} + 5x^{5} \ln z - \sin x \cdot \cos y + 11y - 9x + 3z - 20$$

$$U''_{x} = 25x^{4} \ln z - \cos x \cdot \cos y - 9$$

$$U'''_{xx} = 100x^{3} \ln z + \sin x \cdot \cos y$$

$$U'''_{xy} = \cos x \cdot \sin y$$

$$U'''_{xz} = \frac{25x^{4}}{z}$$

$$U(x, y, z) = 3y^{3}z^{2} + 5x^{5} \ln z - \sin x \cdot \cos y + 11y - 9x + 3z - 20$$

$$U'_{y} = 9y^{2}z^{2} + \sin x \cdot \sin y + 11$$

$$U''_{yx} = \cos x \cdot \sin y$$

$$U''_{yy} = 18yz^{2} + \sin x \cdot \cos y$$

$$U''_{yz} = 18y^{2}z$$

$$U(x, y, z) = 3y^3z^2 + 5x^5 \ln z - \sin x \cdot \cos y + 11y - 9x + 3z - 20$$

$$U_z' = 6y^3z + \frac{5x^5}{z} + 3$$

$$U_{zx}^{\prime\prime} = \frac{25x^4}{z}$$

$$U_{zy}^{\prime\prime} = 18y^2z$$

$$U_{zz}^{"} = 6y^3 - \frac{5x^5}{z^2}$$

Экстремум функции 2-х переменных

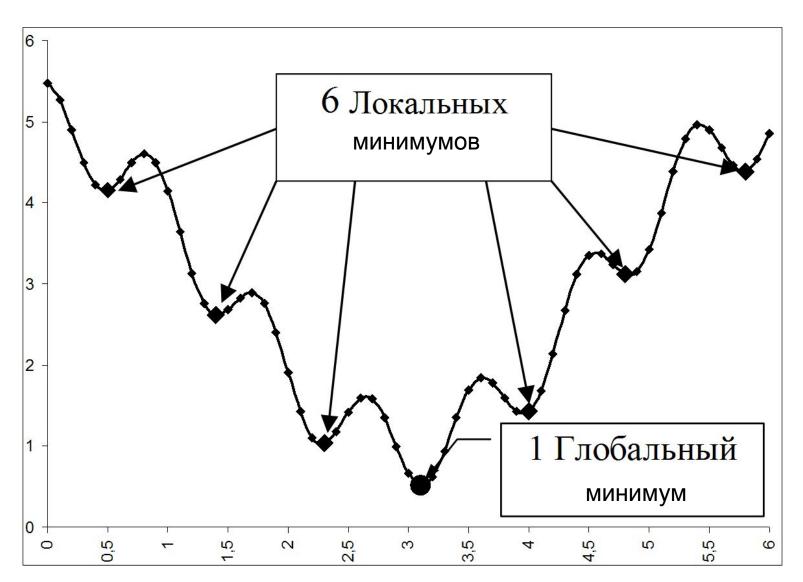
Точка $M_0(x_0, y_0)$ называется точкой максимума для функции $\mathbf{z} = \mathbf{f}(\mathbf{x}, \mathbf{y})$, если для всех точек $\mathbf{M}(\mathbf{x}, \mathbf{y})$ из некоторой окрестности этой точки, достаточно близких к $M_0(x_0, y_0)$, но отличных от нее, выполняется условие:

$$f(x_0, y_0) > f(x, y).$$

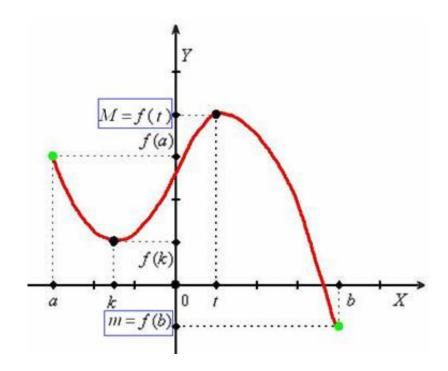
Точка $M_0(x_0, y_0)$ называется точкой минимума для функции $\mathbf{z} = \mathbf{f}(\mathbf{x}, \mathbf{y})$, если для всех точек $\mathbf{M}(\mathbf{x}, \mathbf{y})$ из некоторой окрестности этой точки, достаточно близких к $M_0(x_0, y_0)$, но отличных от нее, выполняется условие:

$$f(x_0, y_0) < f(x, y).$$

Локальный и глобальный экстремумы: разница



Найти наибольшее и наименьшее значения функции на заданном отрезке



http://mathprofi.ru/naibolshee i naimenshee znacheniya funkcii na otrezke.html (пример 3)

Экстремум функции 2-х переменных

Необходимые условия экстремума.

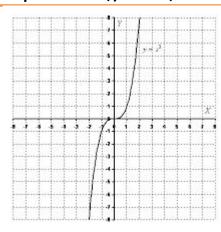
Частные производные равны нулю или не существуют. Точки, для которых это выполняется, называются критическими. Точки, в которых производная равна 0, называются стационарными.

Технически – решаем систему уравнений

Важно!

Не каждая критическая точка является точкой экстремума.

Аналог для функций одной переменой: точки перегиба ($y = x^3$)



Необходимые условия экстремума функции нескольких переменных

$$z'_{x}=0$$

 $z'_{y}=0$

(для стационарных точек)

Достаточное условие экстремума (для стационарных точек)

1

Функция $\mathbf{z} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ имеет в стационарной точке $M_0(x_0, y_0)$ экстремум, если в этой точке выполняется условие:

$$\Delta = \begin{vmatrix} z''_{xx} & z''_{xy} \\ z''_{xy} & z''_{yy} \end{vmatrix} > 0$$

2

$$z''_{xx} > 0$$
 Минимум $z''_{xx} < 0$ Максимум

Если $\Delta < 0$ - экстремума нет

Если $\Delta = 0$ - ? нужны дальнейшие исследования

Определитель матрицы 2х2

$$\Delta_2 = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

К достаточному условию есть несколько подходов

Два математических:

- через полный дифференциал второго порядка (требует большого навыка работы с числами);
- через уравнения касательной плоскости (является самым сложным способом, но при этом самым надежным).

Два алгебраических:

- через критерий Сильвестра (с помощью матрицы Гёссе. Является самым простым способом, но требует начального уровня знания в линейной алгебре);
- через собственные значение матрицы Гёссе (является самым быстрым, но требует более глубокого уровня знания в линейной алгебре).

Пример: исследовать на экстремум функцию

$$z = x^3 + 8y^3 - 6xy + 1$$

Необходимые условия

$$z = x^3 + 8y^3 - 6xy + 1$$

$$\begin{cases} \frac{\partial z}{\partial x} = 3x^2 - 6y = 0\\ \frac{\partial z}{\partial y} = 24y^2 - 6x = 0 \end{cases}$$

из (2):
$$x = 4y^2$$

(1): $x^2 - 2y = 0$
в (1): $(4y^2)^2 - 2y = 0$
 $16y^4 - 2y = 0$
 $2y(8y^3 - 1) = 0$

$$\begin{bmatrix} y = 0 \\ y = \frac{1}{2} \end{bmatrix}$$

Найдём
$$x = 4y^2$$
:
$$\begin{cases} x = 1 \\ y = \frac{1}{2} \\ x = 0 \\ y = 0 \end{cases}$$

Достаточные условия (частный случай критерия Сильвестра)

$$\begin{cases} \frac{\partial z}{\partial x} = 3x^2 - 6y : \\ \frac{\partial z}{\partial y} = 24y^2 - 6x \end{cases}$$

$$\frac{\partial^2 z}{\partial x^2} = 6x; \ \frac{\partial^2 z}{\partial x \partial y} = -6; \ \frac{\partial^2 z}{\partial y^2} = 48y.$$

$$\begin{vmatrix} 6x & -6 \\ -6 & 48y \end{vmatrix}$$

$$\begin{vmatrix} 0 & -6 \\ -6 & 0 \end{vmatrix} = 0 \cdot 0 - 36 = -36 < 0 \Rightarrow$$
 нет экстремума

$$\begin{vmatrix} 6 & -6 \\ -6 & 24 \end{vmatrix} = 6 \cdot 24 - 36 = 144 - 36 = 108 > 0$$

6>0 => M2 (1;0.5) – точка минимума.

Экстремум функции двух переменных

$$z = x^3 + 8y^3 - 6xy + 1.$$

Проведем исследование на экстремум данную функцию. Прежде всего найдем критические точки. То есть приравняем нулю первые производные.

$$\begin{cases} \frac{\partial z}{\partial x} = 3x^2 - 6y = 0\\ \frac{\partial z}{\partial y} = 24y^2 - 6x = 0 \end{cases}$$

$$\frac{\partial^2 z}{\partial x^2} = 6x; \ \frac{\partial^2 z}{\partial x \partial y} = -6; \ \frac{\partial^2 z}{\partial y^2} = 48y.$$

найдем частные вторые производные И посчитаем детерминант.

Детерминант в точке M_1 $\Delta(M_1) = A \cdot C - B^2 = 0 \cdot 0 - (-6)^2 = -36 < 0.$

Детерминант в точке М₂

$$\Delta(M_2) = 108 > 0$$
, $A > 0$, значит, в точке M_2 — минимум.

Комментарий к записи

$$U = U(x, y)$$
 => $dU = \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = U_x' dx + U_y' dy$

Аппроксимация

Определение:

Метод состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.

Например: нелинейные функции линейными, дискретные данные функциями.

Требования:

- > Конкретных вид функции.
- Минимальное отклонение от заданной функции.

- Интерполяция способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
- Экстраполяция способ построения функции вне интервала известных значений.

Интерполяция

Определение:

Метод нахождения промежуточных значений функции по имеющемуся дискретному набору известных значений.

Требования:

- Прохождение функции через данные точки.
- > Монотонность функции в данных точках.

Функция одной переменной: практический пример интерполяции

Шкала спроса на условный товар

Цена за товарную единицу (д. ед.)	Величина спроса в неделю (т. е.)	Точка на графике
5	10	C,
4	20	C ₂
3	35	C ₃
2	55	C ₄
1	80	C ₅

Функция одной переменной: практический пример интерполяции

Аппроксимация. Метод наименьших квадратов

<i>X</i> :	x_1	x_2	x_3	 x_n
Y:	<i>y</i> ₁	y_2	y_3	 y_n

Аппроксимация. Метод наименьших квадратов

X :	x_1	x_2	x_3	•••	x_n
Y:	y_1	y_2	y_3		y_n

$$y = ax + b$$

$$y - ax - b = 0$$

$$y_i - ax_i - b = \varepsilon_i$$

$$U(a, b) = \varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_i^2 + \dots + \varepsilon_n^2$$

$$\begin{cases} U_a' = 0 \\ U_b' = 0 \end{cases}$$

Аппроксимация. Метод наименьших квадратов

<i>X</i> :	x_1	x_2	x_3	 x_n
Y:	<i>y</i> ₁	y_2	<i>y</i> ₃	 y_n

$$\hat{y}_i = ax_i + b$$

$$\varepsilon_i = \hat{y}_i - y_i$$

$$y = ax + b$$

$$\hat{y}_i = ax_i + b$$

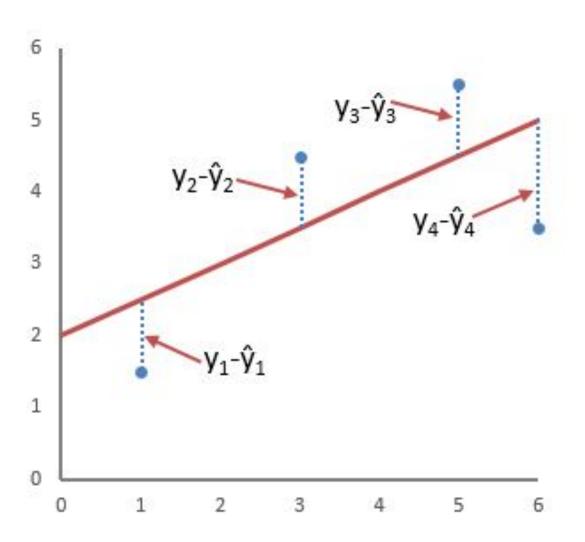
$$y - ax - b = 0$$

$$y_i - ax_i - b = \varepsilon_i$$

$$U(a,b) = \varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_i^2 + \dots + \varepsilon_n^2$$

$$\begin{cases} U_a' = 0 \\ U_b' = 0 \end{cases}$$

МНК



$$y_{i} - ax_{i} - b = \varepsilon_{i}$$

$$U(a, b) = \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + \dots + \varepsilon_{i}^{2} + \dots + \varepsilon_{n}^{2}$$

$$U(a, b) = (y_{1} - ax_{1} - b)^{2} + (y_{2} - ax_{2} - b)^{2} + \dots + (y_{n} - ax_{n} - b)^{2}$$

$$\begin{cases} U_{a}' = 0 \\ U_{b}' = 0 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} (-2x_i \cdot (y_i - ax_i - b)) = 0 \\ \sum_{i=1}^{n} (-2 \cdot (y_i - ax_i - b)) = 0 \end{cases}$$

Аппроксимация. Метод наименьших квадратов

$$\begin{cases} \sum_{i=1}^{n} \left(-2x_i \cdot (y_i - ax_i - b) \right) = 0 \\ \sum_{i=1}^{n} \left(-2 \cdot (y_i - ax_i - b) \right) = 0 \end{cases}$$

$$\begin{cases} a = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i} \right)^2} \\ b = \frac{\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2} \end{cases}$$

Оценка качества модели: коэффициент детерминации

Коэффициент детерминации R²

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$$

$$RSS + ESS = TSS$$

Находится в диапазоне от 0 до 1; Чем ближе к 1, тем лучше модель.

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

residual sum of squares (сумма квадратов отклонений)

$$TSS = \sum_{i} (y_i - \bar{y})^2$$

total sum of squares (общая сумма квадратов)

$$ESS = \sum_{i} (\hat{y}_i - \bar{y})^2$$

explained sum of squares (объяснённая сумма квадратов)

МНК для нелинейных функций

Взвешенный МНК Обобщённый МНК И т. д.

МНК для нелинейных функций

$$y = e^{ax+b}$$

МНК для нелинейных функций

$$y = e^{ax+b}$$

$$lny = ax + b$$

Спасибо!