Алюминий

Свойства элементов подгруппы алюминия

Атомный	Название	Электронная	r	t°пл.	t°кип.	ЭО	ПИ	Атомный	Степень
номер		конфигурация	Γ/cm^3	°C	°C		эВ	радиус,	окисления
								НМ	
5	Бор В	[He] 2s ² 2p ¹	2,35	2300	2550	2,0	8,3	0,095	+3
13	Алюминий	[Ne] 3s ² 3p ¹	2,70	660	2467	1,47	6,0	0,143	+3
	Al								
31	Галлий Ga	[Ar] $3d^{10} 4s^2 4p^1$	5,91	30	2227	1,6	6,0	0,122	+3
49	Индий In	[Kr] 4d ¹⁰ 5s ² 5p ¹	7,30	156	2047	1.7	5,8	0,162	+1,+2,+3
81	Таллий Tl	$[Xe]4f^{14}5d^{10}6s^{2}6$	11,85	303	1457	1,8	6,1	0,167	+1,+3
		p^1							

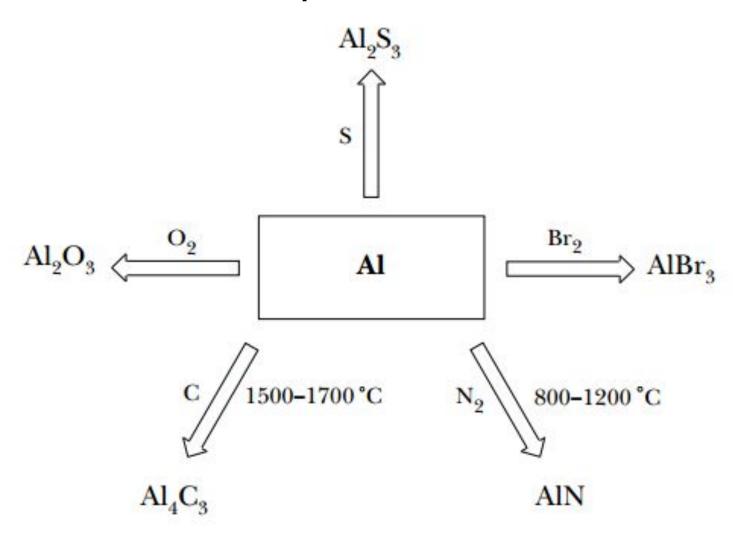
Химические свойства

- 1. Все элементы трехвалентны, но с повышением атомной массы приобретает значение валентность, равная единице (Т1 в основном одновалентен).
- 2. Основность гидроксидов $R(OH)_3$ возрастает с увеличением атомной массы (H_3BO_3) слабая кислота, $Al(OH)_3$ и $Ga(OH)_3$ амфотерные основания, $ln(OH)_3$ и $Tl(OH)_3$ -типичные основания, TlOH сильное основание).
- 3. Металлы подгруппы алюминия (Al, Ga, In, Tl) химически достаточно активны (реагируют с кислотами, щелочами (Al, Ga), галогенами).
- 4. Соли элементов подгруппы алюминия в большинстве случаев подвергаются гидролизу по катиону. Устойчивы лишь соли одновалентного таллия.
- 5. Al и Ga защищены тонкой оксидной пленкой; Tl разрушается при действии влажного воздуха, (хранят в керосине).

Общая характеристика. Важнейшим представителем металлов-pэлементов является алюминий, элемент IIIA-группы, $A_{\rm r}$ (Al) = 27.
Электронная конфигурация атома алюминия: $1s^22s^22p^63s^23p^1$ валентные

Физические и химические свойства. Алюминий — серебристо-белый металл (на воздухе покрывается плотной тонкой плёнкой оксида), его плотность — 2.7 г/см^3 (лёгкий металл), он легкоплавок ($t_{\text{пл}}$ = $660 \, ^{\circ}$ C).

электроны


По распространённости в земной коре алюминий занимает четвёртое место (после O, Si, H). Основная масса его сосредоточена в алюмосиликатах. Продуктом разрушения алюмосиликатов является глина, она состоит из каолинита $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$. Из других минералов наибольшее распространение имеет боксит $Al_2O_3 \cdot nH_2O$.

Получение алюминия и его соединений

Вещества, содержащие алюминий, были известны с глубокой древности. Уже 2500 лет назад в Египте добывались квасцы (двойной сульфат калия-алюминия $KAl(SO_4)_2 \cdot 12H_2O)$, которые римляне потом стали называть alumen («горькая соль»); их использовали как протраву при крашении тканей. Само слово alumen происходит, вероятно, от греческого xalme — «соляной раствор». В 1754 г. немецкий химик А.С. Маргграф выделил из квасцов бесцветную «землю» (оксид алюминия). В 1825 г. датчанин Х.К. Эрстед впервые получил алюминий, пропуская хлор через раскалённую смесь его оксида и угля, а затем обработал полученный безводный $AlCl_2$ амальгамой калия.

В 1886 г. французом П. Эру и американцем М. Холлом был разработан метод получения алюминия посредством электролиза ${\rm Al}_2{\rm O}_3$ в расплавленном криолите (${\rm Na}_3[{\rm AlF}_6]$). В колледже города Оберлин, где работал Холл, ему был поставлен памятник из чистого алюминия, полученного по открытому им методу.

Реакции алюминия с простыми веществами

Алюминий непосредственно не реагирует с водородом. Гидрид алюминия получают косвенным путём в результате взаимодействия литийалюмогидрида (LiAlH₄) с хлоридом алюминия в диэтиловом эфире:

$$LiAlH_4 + AlCl_3 = 3LiCl + 4AlH_3$$

Образующийся гидрид алюминия выделяется в виде белой аморфной массы.

Реакции со сложными

 Реакции со сложными веществами. Если удалена оксидная плёнка, алюминий энергично взаимодействует с водой:

$$_{2Al}^{0} + _{6H_{2}O}^{+1} = _{2Al(OH)_{3}}^{+3} + _{3H_{2}}^{0}$$

Вследствие высокого теплового эффекта реакции с кислородом алюминий активно восстанавливает многие металлы из их оксидов (алюмотермия):

$$^{+3}$$
 0 $^{+3}$ 0

Алюмотермия была предложена Н.Н. Бекетовым в 1859 г. Этот способ применяется при получении марганца, хрома, ванадия, вольфрама, ферросплавов.

Взаимодействие с кислотами

Алюминий реагирует с разбавленной серной кислотой, галогеноводородными кислотами с образованием солей и выделением водорода, например:

$$0 +1 +3 0$$

$$2Al + 6HCl = 2AlCl_3 + 3H_2 \uparrow$$

$$2Al^0 + 6H^+ = 2Al^{3+} + 3H_2^0 \uparrow$$

Однако он не взаимодействует с азотной и серной концентрированной кислотами в обычных условиях. На поверхности алюминия образуется защитная оксидная плёнка, т. е. алюминий пассивируется. Но с разбавленной азотной кислотой (2–3 моль/л) алюминий реагирует с образованием нитрата алюминия, нитрата аммония и воды:

$$0 +5 +3 -3 +5$$

8Al + 30HNO₃ = 8Al(NO₃)₃ + 3NH₄NO₃ + 9H₂O

Взаимодействие со щелочами и солями

Алюминий активно взаимодействует с растворами щелочей. Щёлочи растворяют оксидную плёнку на поверхности алюминия. Образуются комплексные соли, в которых алюминий находится в анионной форме, и выделяется водород:

$$_{2}^{0}$$
 2Al + 2NaOH + $_{2}^{0}$ O = 2Na[Al(OH) $_{4}$] + 3H $_{2}$ ↑ тетрагидроксоалюминат натрия

Реагирует алюминий и *с растворами солей*, восстанавливая катионы менее активных металлов (металлов, расположенных в ряду напряжений правее алюминия):

$$0 + 2 + 3 = 0$$

 $2Al + 3CuCl_2 = AlCl_3 + 3Cu$
 $2Al^0 + 3Cu^{2+} = 2Al^{3+} + 3Cu^{2+}$

Соединения алюминия

Оксидалюминия

$$Al_2O_3$$

Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий). **Кристаллическая решетка атомная**.

Твердое тугоплавкое (t°пл.=2050°С) вещество; существует в нескольких кристаллических модификациях ($a - Al_2O_3$, $g - Al_2O_3$).

Получение

$$4A1 + 3O_2 = 2Al_2O_3$$

 $2Al(OH)_3 = Al_2O_3 + 3H_2O_3$

Соединения алюминия

Оксид алюминия Al_2O_3 — типичный амфотерный оксид, гидроксид алюминия $Al(OH)_3$ — типичный амфотерный гидроксид. Они реагируют как с кислотами, так и с щелочами:

$$Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$$
 $Al(OH)_3 + OH^- = [Al(OH)_4]^-$

Водородное соединение алюминия — гидрид алюминия AlH₃ (алан) — белый порошок.

Закрепление

- 8. Напишите уравнения реакций, с помощью которых можно осуществить превращения веществ:
 - а) алюминий \rightarrow оксид алюминия \rightarrow сульфат алюминия \rightarrow гидроксид алюминия \rightarrow оксид алюминий;
 - б) алюминий → хлорид алюминия → гидроксид алюминия → оксид алюминия → ния → метаалюминат натрия → нитрат алюминия → оксид алюминия → алюминий → гидроксид алюминия;
 - в) алюминий \to сульфид алюминия \to хлорид алюминия \to гидроксид алюминия \to тетрагидроксоалюминат натрия \to нитрат алюминия \to оксид алюминия \to алюминий \to тетрагидроксоалюминат калия.

[8] Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) Li

1) HCl, KOH, CaO

Б) SO₂

AgNO₃, Ba(OH)₂, CuSO₄

B) Zn(OH)₂

3) Br_{2(p-p)}, NaOH, O₂

Γ) ZnI₂

4) NaOH, O2, S

P, CH₃OH, H₂O

[32] Нитрат калия прокалили. Образовавшийся твердый остаток прореагировал с раствором иодида калия, подкисленным серной кислотой. Полученное твердое вещество прореагировало с алюминием в присутствии следовых количеств воды. Продукт реакции растворили в избытке раствора гидроксида натрия. Напишите уравнения четырёх описанных реакций.

Задание № 32

•Порошок металлического алюминия сме шали с твердым иодом и добавили не сколько капель воды. К полученной соли добавили раствор гидроксида натрия до выпадения осадка. Образовавшийся оса док растворили в соляной кислоте. При последующем добавлении раствора карбо ната натрия вновь наблюдали выпадение осадка.

[8] Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) HCI

Б) Na₂CO₃В) Си

Γ) Al₂O₃

O2, S, HNO3

SiO₂, HNO₃, BaCl₂

3) HBr, CO2, H2O

4) CaCO3, MnO2, NaOH

KOH, HNO₃, Na₂O

[34] В 15%-ный раствор сульфата меди (II) объемом 222,2 мл (р = 1,08 г/мл) поместили 5,4 г алюминия, а затем добавили 114,4 г кристаллической соды (Na₂CO₃-10H₂O). Вычислите массовую долю карбоната натрия в полученном растворе.