

ТЕМА КОНКУРСНОЙ РАБОТЫ:

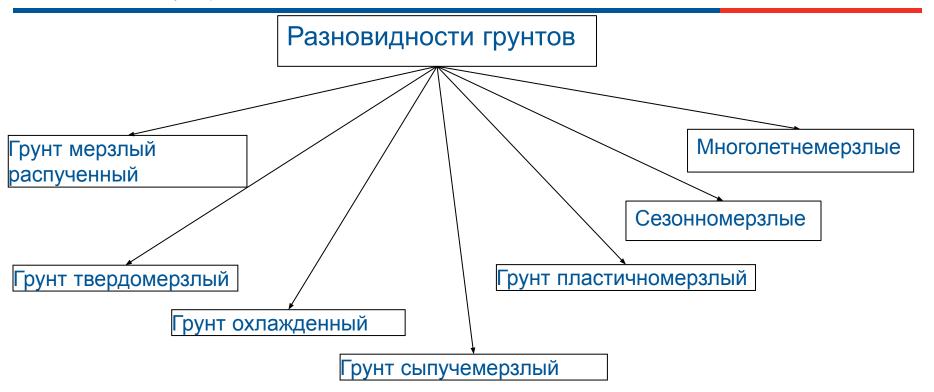
АНАЛИЗ МЕТОДОВ ПРОКЛАДКИ ТРУБОПРОВОДОВ В РАЙОНАХ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ

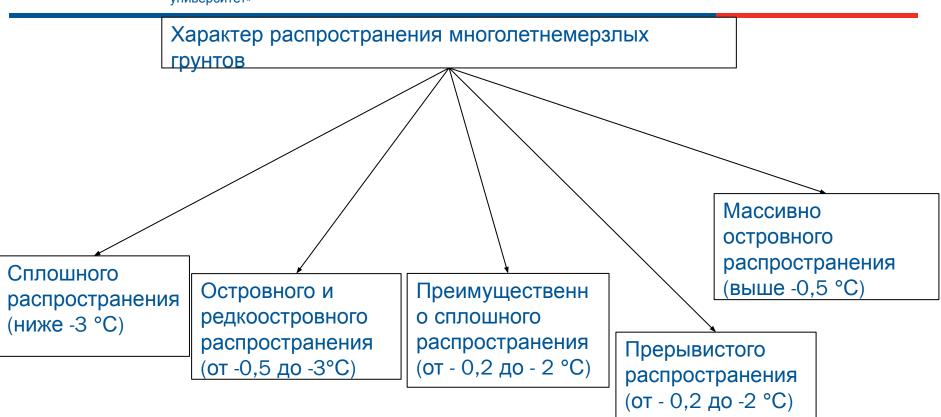
АВТОРЫ:

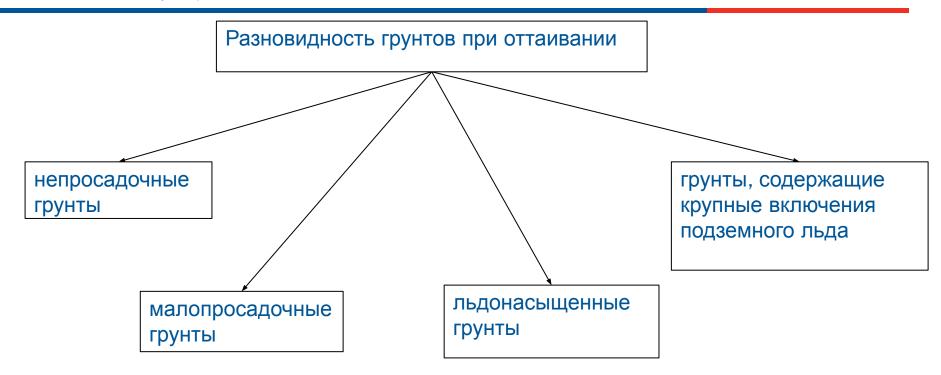
Студенты 3-НТФ-3 Картошкин А. Д. Ревунов Е. А. РУКОВОДИТЕЛЬ: Старший преподаватель

Галтеева Татьяна Алексеевна

Цель: Анализ методов прокладки нефтепровода в районах многолетнемёрзлых грунтов


Проблемы многолетнемерзлых грунтов





Строение толщи мерзлого грунта

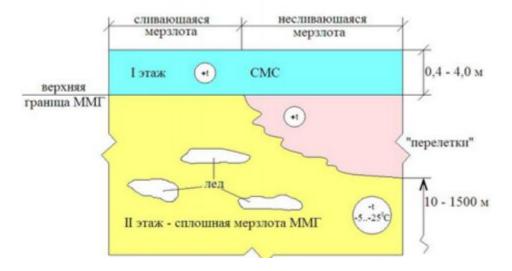


Рисунок – Многолетнемерзлый грунт, вид в разрезе.

Основные теплофизические свойства ММГ

В состав теплофизических характеристик, определяемых для грунтов, входят:

- теплоемкость (С);
- теплопроводность (А);
- температура начала замерзания грунта (Tbf),
- теплота таяния (замерзания) грунта (Lv);
- температуропроводность (а);
- коэффициент объемного расширения (βt);
- коэффициент морозостойкости (КМ).

Дисперсность грунта

Теплопроводность	мерзлого грунта,	талогогрунта, ккал/м		
различных типов	ккал/м град час	град час		
грунта Порода				
Песок кварцевый	2,04	1,68		
мелкозернистый				
Супесь легкая	1,56	1,30		
пылеватая				
Суглинок легкий	1,07	0,92		
пылеватый				

Специфические особенности нефтегазового строительства и использования ММГ в качестве оснований сооружений

Теплоизоляция нефтепровода

Теплоизоляция нефтепровода

Свойства Коэф			эффициент			Характеристика		Темпе	ратура	применения,			
пенополиуретана те		тепло	теплопроводности,			пористости			°C				
Объемная масса, кг/м		ккал/м·ч·°С											
по ГОСТ или ТУ		конст	тная рукциі		по или Т	гу	расче в конст ии		t _{min}			t _{max}	
30-40	40-50			-		0,040 -0,045		открь	ітая	-60		-	+100

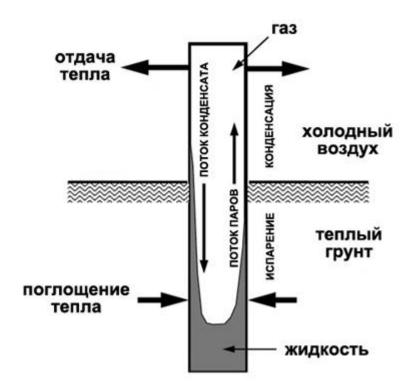
Формула расчета теплоизоляции труб.

In B =
$$2\pi\lambda$$
 [K(tT — to) / qL — RH]

λ — коэффициент теплопроводности утеплителя, Вт/(м °С);

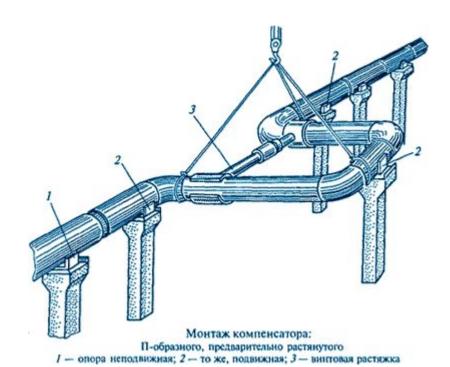
К — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения К можно взять из Таблицы 1;

tт — температура в градусах транспортируемой среды или теплоносителя:

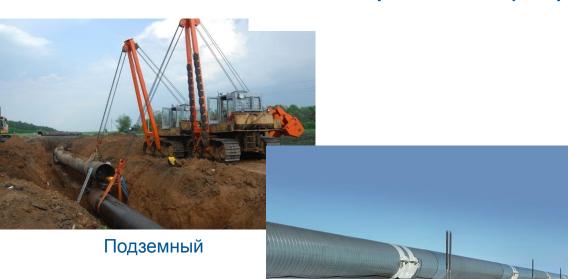

to — температура наружного воздуха, °С;

qL — величина теплового потока, Вт/м2;

Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 °C) / Вт.



Термостабилизация многолетнемерзлых грунтов



Компенсатор

Виды прокладки нефтепровода

Наземный

Надземный

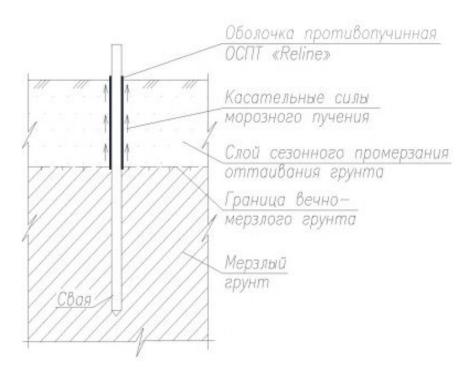
Подземный способ

пиокпалки

Плюсы	Минусы
Не влияет на места миграции животных	Возникает необходимость в разработке многолетнемерзлых грунтов
-	Увеличивается глубина протаивания грунта
_	Проблематичность выкапывания траншеи под трубопровод

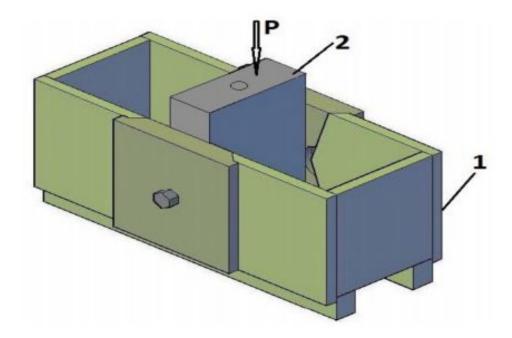
Наземная прокладка

Плюсы	Минусы
Нет необходимости в разработке траншеи	Обеспечения безопасности людей и экологии в случаи аварии
Растительный покров остается в целостности	Осыпание насыпи
Являются самыми надежными в сейсмически неустойчивых районах	-

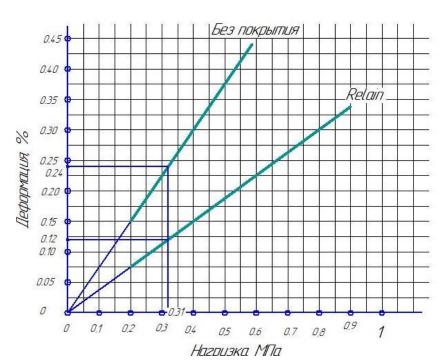


Надземный способ

Плюсы	Минусы						
Изменение грунтовой обстановки	Обеспечения безопасности людей и экологии в случаи аварии						
Теплообмен между грунтом и трубопроводом минимальный	Необходимо предусматривать места миграции животных и проезда транспорта						
-	искусственное промораживание причиной пучения грунтов						



Покрытие Reline как способ минимизации влияния касательных сил


Испытания, оборудование и приборы

Т

Условия:

песчано-цементная смесь, плотность: 1,91 г/см3; - температура – минус 1 °C. ton=0,104 МПа

Результаты испытаний

	лл без	Металл, покрытый «Reline»			Коэффици			
пок	рытия							
Nº	NO		Reline	среднее				
	опыта	№ опыта	R _{af} ^{Reline} , MΠa	значение	R_{af}^{Reline}/R_{af}			
Опыта				R _{af} Reline,M∏a				
Температура минус 4°С								
		2	0,255					
1 0,819	3	0,246	0,245	0,30				
	4	0,234						
Температура минус 1°С								
		5	0,104		0,42			
8	0,210	6	0,086	0,089				
		7	0,076					

Вывод

Можно сделать вывод о том, что способ прокладки трубопровода варьируется от условий среды, в случае островного распространения ммг подойдет подземный способ, если грунт с высокой степенью просадочности при оттаивании, то лучше прокладывать надземно, если участки трассы сложены подземным «погребенным» льдом с наличием повторно-жильного льда, то выбирается наземная прокладка

По результатам испытаний можно сделать следующие выводы: Покрытие из термоусаживаемой оболочки «Reline» показало высокую эффективность, прочность на срез по поверхности смерзания снижается в 2,3 – 3,3 раза по сравнению с металлической сваей без покрытий

Нормативная Техническая Документация

- ГОСТ 25100-2011 Грунты. Классификация
- СП 25.13330.2012 Свод правил «СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах»
- СП 36.13330-2012 Магистральные трубопроводы. Актуализированная редакция СНиП 2.05.06-85*.
- ГОСТ 2.306-68 Графические обозначения материалов и правила их нанесения на чертежах.
- ГОСТ 21.302-2013 Условные графические обозначения в документации по инженерно-геологическим изысканиям

- Картошкин Антон Дмитриевич;
- Ревунов Егор Александрович;

СПАСИБО ЗА ВНИМАНИЕ!