1 Фотометрический метод обогащения. Законы, оборудование, область применения.

Закон преломления

$$\sin \varphi / \sin \psi = n_{21}$$

Падение светового потока

$$\Phi_{p} = \Phi_{p0} \cdot e^{-\alpha d}$$

где Φ_{p0} начальное значение светового потока; α — коэффициент поглощения; d — толщина слоя вещества.

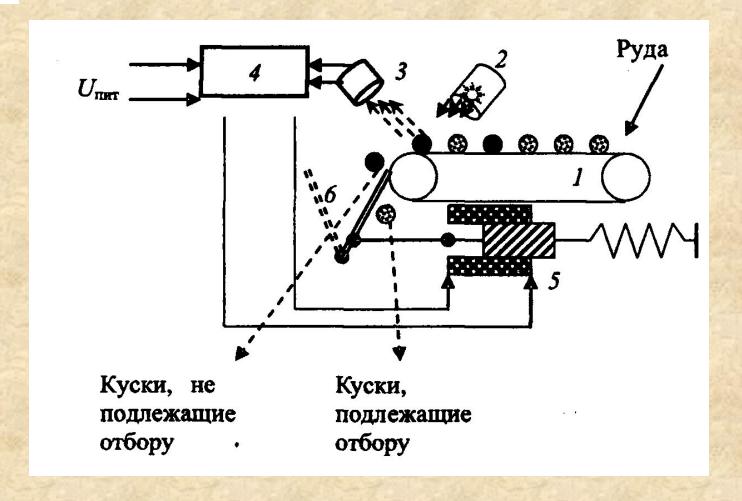
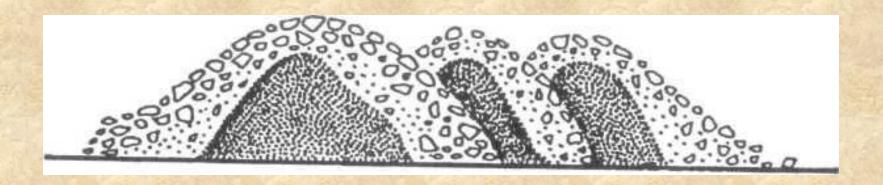



Схема механизированной фотометрической рудоразборки 1 — транспортер; 2 - источник света; 3 — фотоэлемент; 4 — усилитель; 5 — электромагнит; 6 — шибер.


2 Рентгенорадиометрический метод обогащения

3 АГЛОМЕРАЦИЯ РУДЫ И И МАТЕРИАЛОВ

Сегрегация частиц при формировании штабеля

Типовая схема агломерации

4 Свойства руд, влияющие на обогатимость радиометрическими методами

- 1) Вещественный состав
- 2) Распределение ценного компонента в руде

a

Формы распределения ценного компонента в сростках.

- а- равномерная по всему объему сростка с выходом отдельных вкраплений на поверхность;
- б концентрированное, при котором ценный компонент имеет выход на поверхность куска;
- в концентрированное, при котором ценный компонент не имеет выхода на поверхность.

3) Контрастность полезного ископаемого

$$M = \frac{\sum_{i=1}^{n} (|\beta_i - \alpha| \cdot \gamma_i)}{\alpha}$$

где α — среднее содержание ценного компонента в полезном ископаемом, %; β_i — содержание полезного компонента в i-том куске, %; γ_i — выход куска в общей массе руды, доли единиц; n — число кусков в пробе.

M<0,5 – не контрастная; M=0,5-0,7 – низкоконтрастная; M=0,7-1,1 – контрастная; M=1,1-1,5 – высококонтрастная; M>1,5 – особоконтрастная.

Показатель экономической эффективности

$$\beta = \varepsilon \frac{1+\rho}{1+\gamma\rho}$$

$$\rho = \frac{\alpha_1}{\alpha_2}$$

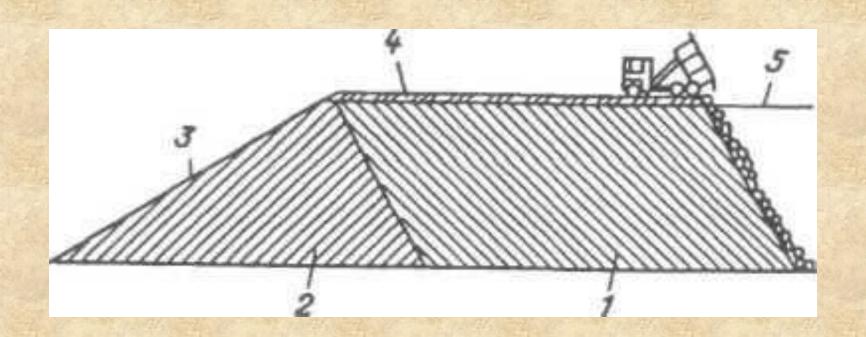
где ε – извлечение металла при радиометрической сортировке;

 α_1 – стоимость переработки руды;

 α_2 – стоимость добычи руды;

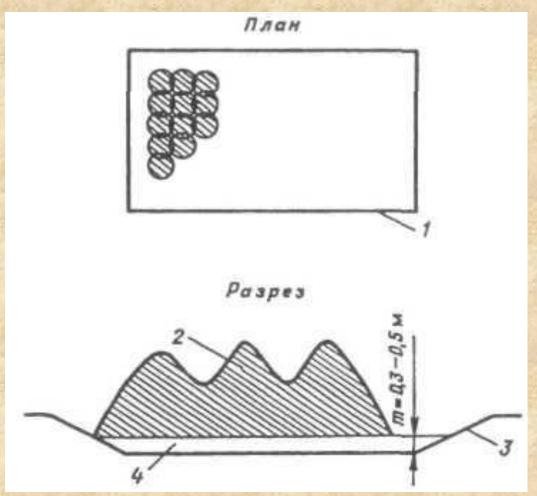
γ - выход обогащенной руды в долях единиц.

4) Содержание полезного компонента

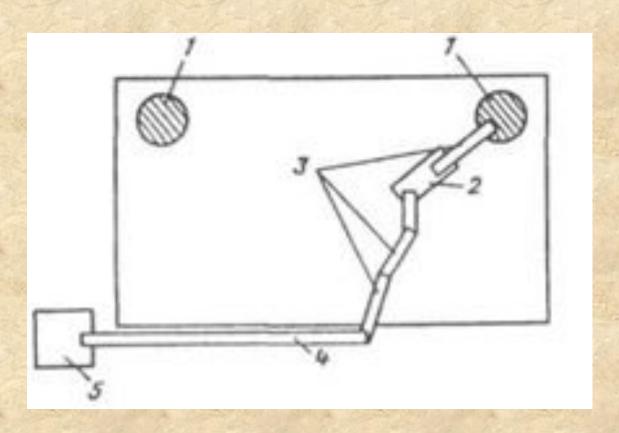

5) Гранулометрический состав

5 Виды площадок, используемые под КВ

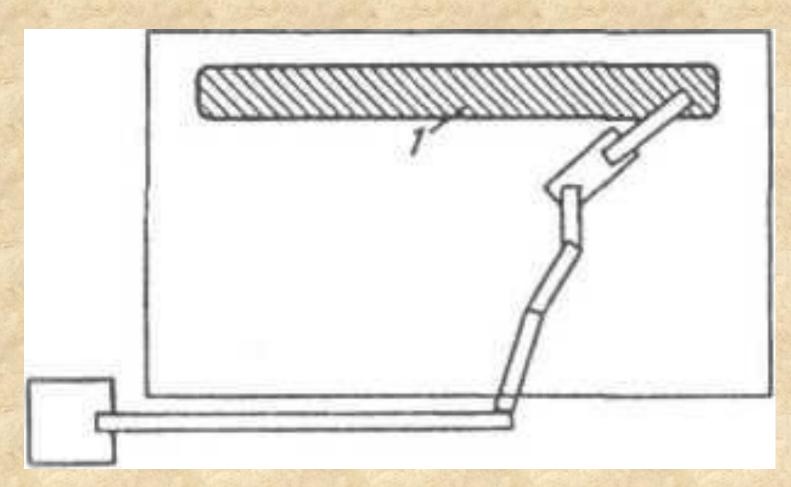
6 Методы сооружения штабелей КВ


Сооружение штабеля "от рудника" с применением самосвальной отсыпки: 1 — руда; 2 — пустая порода; 3 — рампа;

1 — руда; 2 — пустая порода; 3 — рампа; 4 — подъездная дорога; 5 — конечная высота штабеля

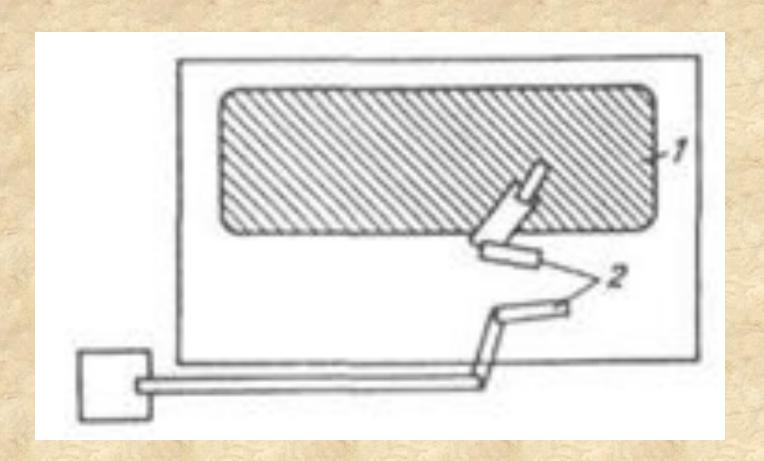

Отсыпка штабелей с перекрытием конусов рудной массы:

- 1 периметр изоляции; 2 отсыпанная руда;
- 3 синтетическая изоляция; 4 защитная изоляция



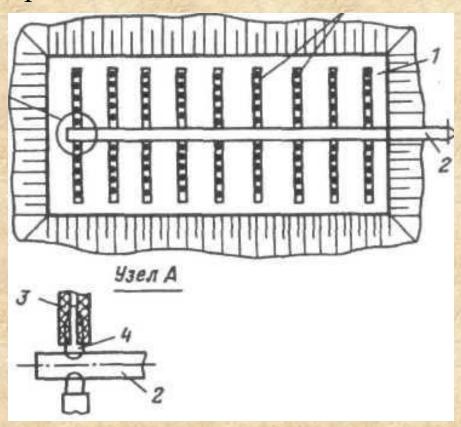
Начальная стадия конвейерной укладки:

- 1 конус руды, размещенный по краям площади;
- 2 телескопический конвейер-укладчик;
- 3 промежуточный секционный конвейер;
- 4 основной конвейер;
- 5 агломерационная установка или бункер для руды



Промежуточная стадия конвейерной укладки: 1— руда образует гребни поперек площадки.

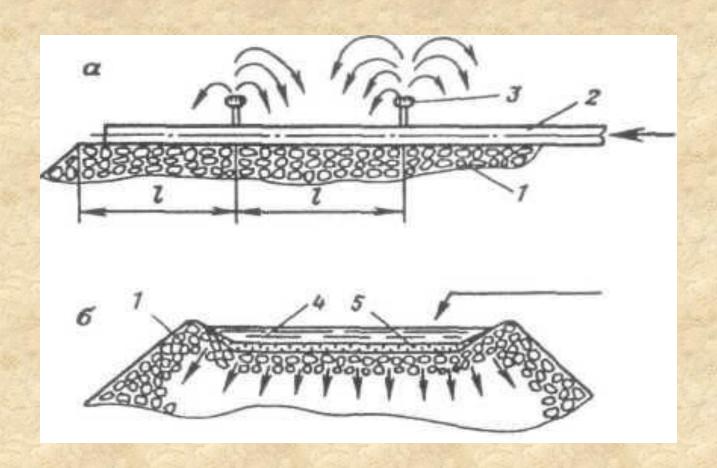
Конечная стадия конвейерной укладки:


- 1 стакерная зигзаговая отсыпка руды на площадку;
- 2 промежуточный конвейер, готовый для перемещения

7 Схемы и режимы орошения штабелей КВ

Точечная схема орошения с применением труб:

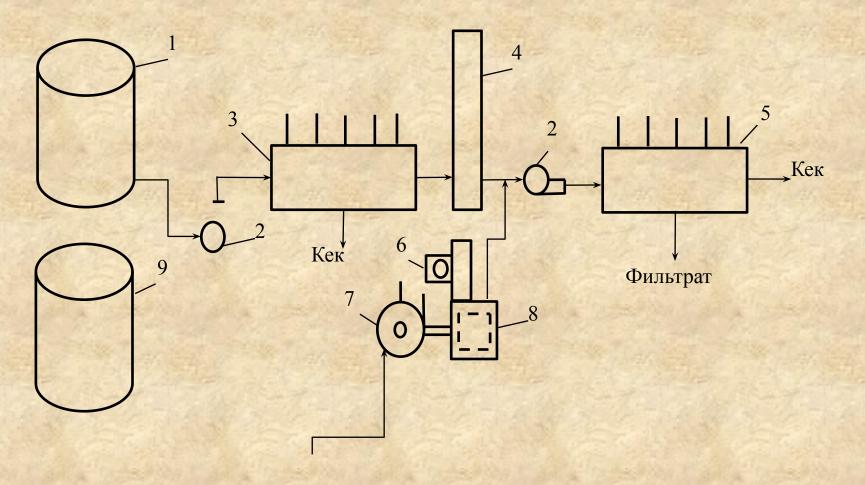
- 1 верхняя площадка штабеля;
- 2 трубопровод;
- 3 перфорированные полиэтиленовые шланги;
- 4 штуцер


Капельная система орошения

Схемы орошения посредством разбрызгивания выщелачивающих растворов (а) и с применением прудка-накопителя (б):

1 - рудная масса; 2 - трубопровод; 3 - форсунка;

4 - выщелачивающий раствор; 5 - песчаный слой.


Прудковое орошение

8 Процесс Меррил-Кроу

Схема цепи аппаратов по извлечению золота из растворов КВ по методу Меррил-Кроу

- 1 намывной бак; 2 насос; 3 очистительный фильтр; 4 башня деаэрации; 5 – осадительный фильтр; 6 – подающее устройство для нитрата свинца;
- 7 воронка для цинка; 8 миксер для цинка; 9 емкость для диатомовой земли.

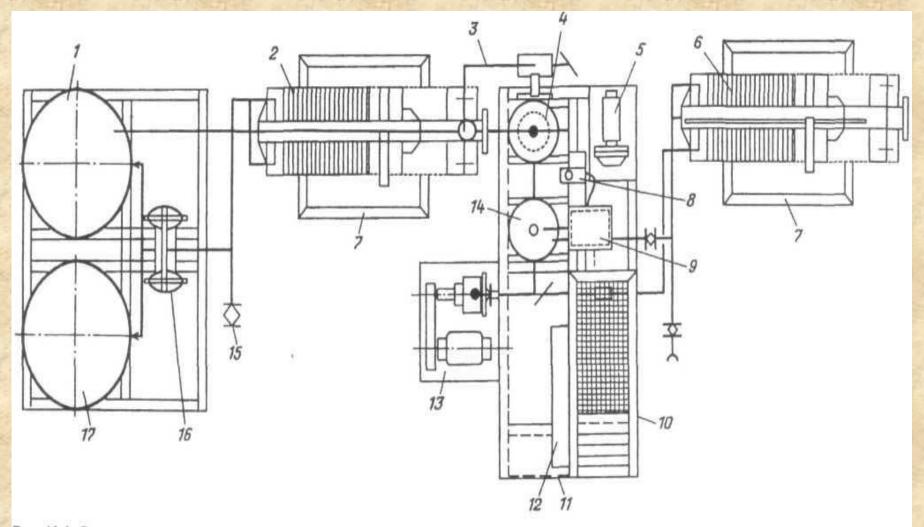


Рис. 10.4. Схема завода по извлечению золота из растворов КВ по методу Меррил-Кроу:

1 — намывной бак; 2 — очистительный фильтр; 3 — контроль уровня; 4 — башня деаэрации; 5 — вакуумный насос; 6 — осадительный фильтр; 7 — корыто фильтра; 8 — подающее устройство для нитрата свинца; 9 — миксер для цинка; 10 — лестница и платформа; 11 — опорная рама; 12 — контрольный щит; 13 — насос для осадительного фильтра; 14 — воронка для цинка; 15 — продуктивный раствор; 16 — насос; 17 — емкость для диатомовой земли

9 Сравнение способов цементации и сорбции

№ п/п Достоинства	№ п/п	Недостатки
Низкие трудовые затраты на производство и техническо обслуживание	e 1	Требуется предварительная обработка продуктивных растворов перед осаждением
Низкие капитальные затраты Возможность переработки продуктивных растворов с бо соотношением серебра и золота	ольшим 2	Процесс чувствителен к ионам сопутствующих металлов
Малое число технологических операций и простота реализации способа в техническом отношени	ии	Низкие содержания полезных компонентов в растворе повышают расход цинка на единицу готового продукта
Возможность применения готовых мо-		
Количество кислых стоков, образующихся в процессе ра цинкового цементата при одной и той же производитель золоту не менее чем в 15 раз ниже, чем при применении	вности по	
сорбционной технологии	аварианта	
	de la company	

Сорбция на уголь				
1	Не требуется	1	Высокие концентрации	
-	предварительной обработки		серебра в	
100	продуктивных растворов		продуктивном растворе	
			вызывают частые	
	PART TO BE PART	and be a sound	перегрузки угля	
2	В процессе можно	2	Уголь предрасположен к	
	использовать глинистые и		загрязнению солями	
	карбонатные руды		кальция и магния	
3	Высокое извлечение	3	Трудоемкость отмывки и	
	независимо от исходных		регенерации угля	
	концентраций полезного	4	Процесс сорбции	
H	компонента	AND THE PARTY OF THE	требует больших	
			капитальных затрат, чем	
	26 - 1		цементация на цинке	

Сорбция на ионообменные смолы					
Высокая степень насыщения смол до	1	Стадия десорбции цветных			
20-30 кг/т смолы по сравнению с 3-5		металлов, золота и серебра			
кг/т для угля		требует применения кислых			
	130	растворов. Использование			
	855	кислых тиомочевинных			
	1	растворов влечет за собой			
		применение титановой			
ENEL MODULE RELEA	3.7	аппаратуры			
Значительная скорость реакции и	2	Извлечение серебра из			
процесса извлечения золота из	1000	продуктивных растворов			
растворов (сокращение	10	существенно ниже, чем при			
продолжительности в 3-5 раз), что		цементации			
обусловливает уменьшение массы	150				
сорбента и объема сорбционного	130	医少于 医多种 的 电电池			
оборудования					
Более высокая степень извлечения из	3	Высокая стоимость			
про-	12-11	ионообменных			
дуктивных растворов (остаточная	1000	смол			
кон-	1 10				
центрация в растворах 0,01-0,03 мг/л		NO THE STATE OF STATE			
для смол по сравнению с 0,1 мг/л для	188				
углей)					

10 Рассчитать эффективность ручной сортировки угля с производительностью выборщика при производительности по исходному питанию 150 т/ч, зольность исходного угля 30%, содержание класса -100+50 мм в исходном питании 55%, количество видимой породы в классе -100+50 мм 45%.

Эффективность процесса оценивается двумя основными показателями

1) коэффициент сортировки пустой породы:

$$\varepsilon = 100Q/Q_p$$

где Q - масса отсортированной пустой породы;

Q_p - масса пустой породы в исходной руде.

2) величина остаточной засоренности:

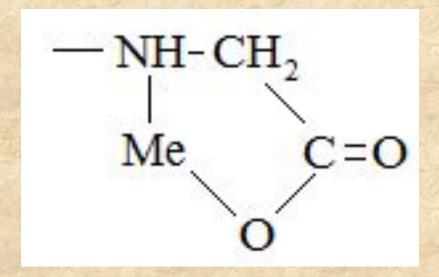
$$P_{\text{oct}} = 100Q_{\text{oct}}/D$$

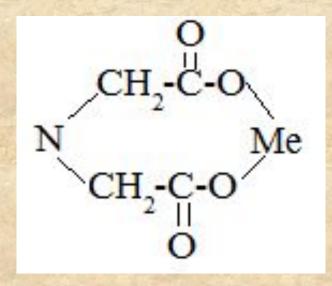
где $Q_{\text{ост}}$ - масса пустой породы оставшейся в руде после сортировки;

D - масса руды после сортировки.

11 Сорбция на уголь. Технологические параметры процесса сорбционного выщелачивания, Предварительное цианирование, Десорбция металлов, регенерация и реактивация с угля.

12 Сорбция на смолу. Виды сорбентов, основные характеристики ионообменных смол.

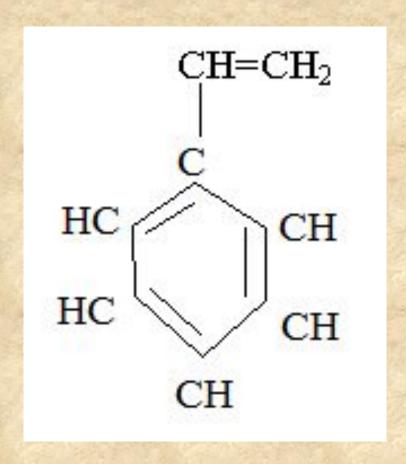

Катионит:


 $2NaR+CaCl_2 \rightarrow CaR_2+2NaCl$ фиксированные катионы $-SO^{3-}$, COO^- , $-PO_3^{-2-}$, $-AsO_3^{-2-}$ и др.

Анионит:

 $2RCl+H_2PtCl_6 \rightarrow R_2PtCl_6+2HCl.$ фиксированные анионы $-NH^{3\mp}$, $=NH_2^{3+}$, $\equiv NH^+$, $\equiv N^+$.

Амфолиты



Активные группы:

- -SO₃H,
- -SO₃Na,
- -COOH,
- -PO₃H₂,
- -AsO₃Na₂,
- -NH₃Cl,
- ≡ NOН и др.

Стирол (получают из этилена и бензола)

Сорбция смолой АМ-2Б

R-OH+
$$[Me(CN)_4]^{k-} \le R - [Me(CN)_4]^{k-} + OH^{-}$$

R-CN+
$$[[Me(CN)_4]^{k-} <=> R- [Me(CN)_4]^{k-} + CN^{-}$$

Десорбция Au(I) и Ag(I) со смолы кислыми растворами тиомочевины:

$$[Au(CN)_2]^- + 2SCN_2H_4 + 2H^+ \rightarrow 2HCN\uparrow + [Au(SCN_2H_4)]_2^+$$

$$[Ag(CN)_2]^- + 2SCN_2H_4 + 2H^+ \rightarrow 2HCN\uparrow + [Ag(SCN_2H_4)]_2^+$$