Химическое (водородное) и электрохимическое аккумулирование энергии.

Химическое аккумулирование

Химические аккумуляторы можно разделить на два типа: органические и неорганические.

Термохимическое аккумулирование основано на использование энергии связей обратимых химических реакций:

$$\begin{split} & \text{MgCO}_3(\text{тв.}) + 1,2 \text{ MДж/кг} = \text{MgO(тв.}) + \text{CO}_2(\text{г.}) \\ & \text{Ca(OH)}_2(\text{тв.}) + 1,4 \text{ MДж/кг} = \text{CaO(тв.}) + \text{H}_2\text{O(г.}) \\ & \text{SO}_3(\text{г.}) + 1,2 \text{ MДж/кг} = \text{SO}_2(\text{г.}) + 0,5\text{O}_2(\text{г.}) \\ & \text{CH}_4(\text{г.}) + \text{H}_2\text{O(г.}) + 6,05 \text{ MДж/кг} = \text{CO(г.}) + 3\text{H}_2(\text{г.}) \\ & \text{H}_2\text{O(г.}) + 120 \text{ MДж/кг} = \text{H}_2 + 0,5\text{O}_2 \end{split}$$

Водород является самым распространенным элементом на поверхности Земли, но при этом он не является источником энергии как природный газ, поскольку в основном находится в связанном состоянии в виде воды.

Поэтому водород это только энергоноситель.

Преимущества использование водородного аккумулятора:

- при сгорании водорода образуется только вода, которая может возвращаться в круговорот веществ в природе;
- водород легко улетучивается, а значит не возникает застойных взрывоопасных зон;
- теплота сгорания водорода в 2,8 раза выше по сравнению с бензином;
- в виде газа водород может быть накоплен и передан на большие расстояния без существенных затрат.

Недостатки:

- водород более взрывоопасен, чем метан,
- сложность хранения водорода (объемная теплота сгорания водорода в три раза меньше, чем у природного газа),
- все известные способы получения водорода из воды имеют низкий КПД (менее 60%).

Способы получения водорода:

- 1. химические,
- 2. электролитические,
- 3. термолитические.
- 4. фотокаталитические,
- 5. биохимические.

Химический способ получения водорода.

1. частичное окисление,

$$CH_4 + 0.5O_2 = CO + 2H_2$$

2. паровая конверсия

$$CH_4 + H_2O = CO + 3H_2$$

3. термическое разложение спиртов

$$CH_3OH = CO + 2H_2$$

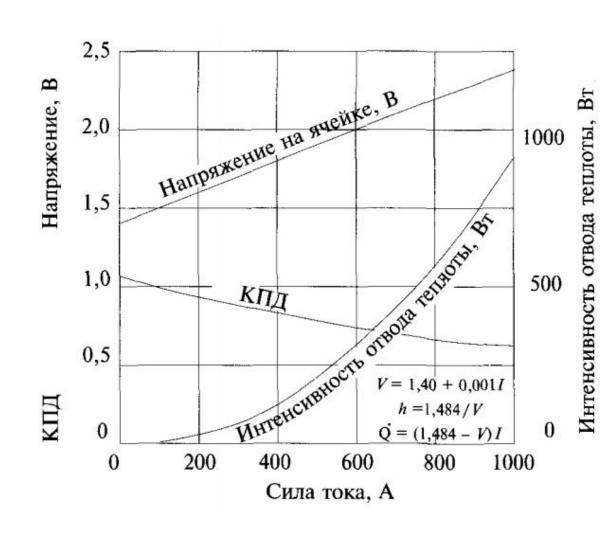
$$C_2H_5OH = CO + H_2+CH_4$$

4. конверсия угарного газа,

$$CO + H_2O = CO_2 + H_2$$

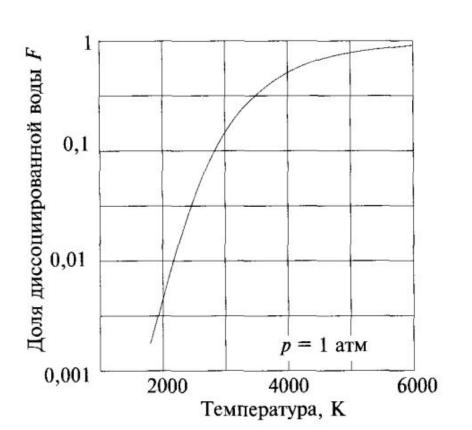
Электролитический способ получения водорода.

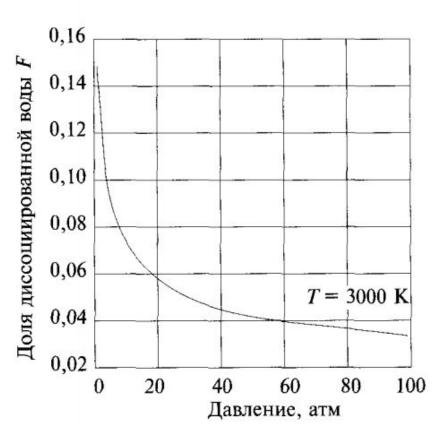
Преимущество — получение водорода высокой степени чистоты, в отличии от химического способа.


Конструктивно электролизеры делятся:

- 1. с жидким электролитом (кислотным и щелочным),
- 2. с твердополимерным электролитом
- 3. с керамическим электролитом

Эффективность электролизеров


КПД электролизера


$$\eta = 1,484 / V$$

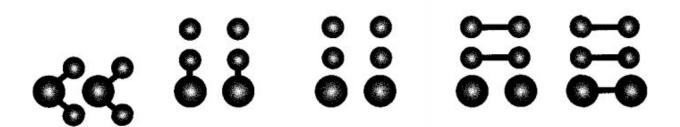
Термическое разложение (диссоциация) воды

$$H_2O = 0.5O_2 + H_2$$

Термохимическое разложение воды

$$CaBr2 + 2H2O = Ca(OH)2 + 2HBr$$

$$Hg + 2HBr = HgBr2 + H2$$

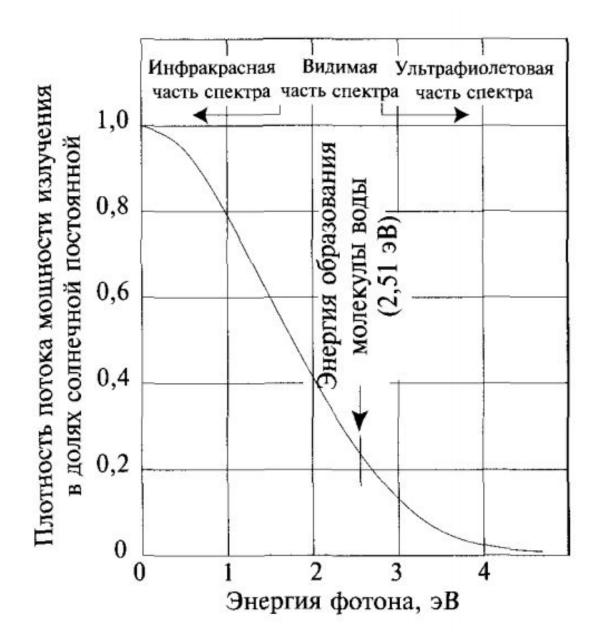

Реакции восстановления

$$HgBr_2 + Ca(H_2O) = CaBr_2 + 2H_2O + HgO$$

 $HgO = Hg + 0.5O_2$

Температура менее 900 С.

Фотокаталитическое разложение воды


Реакция	эВ на одну молекулу	МДж/кмоль	
$H_2O \rightarrow H + OH$	5,15	496,2	
$OH \rightarrow H + O$	4,40	423,9	
$H+H \rightarrow H_2$	-4,48	-431,7	
$O+O \rightarrow O_2$	-5,12	-493,3	
$H_2O \rightarrow H_2 + \frac{1}{2}O_2$	2,51	241,8	

$$2H_2O \rightarrow 2H + 2OH \rightarrow 4H + 2O \rightarrow 2H_2 + 2O \rightarrow 2H_2 + O_2$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$2 \cdot 5,15 \ni B + 2 \cdot 4,40 \ni B - 2 \cdot 4,48 \ni B - 50,12 \ni B$$

Биохимическое разложение воды

Большинство растений на свету потребляют углекислый газ и выделяют кислород.

Однако в темноте происходит обратный процесс, потребляют кислород, необходимый для метаболизма.

Некоторые водоросли в темноте извлекают кислород из воды, выделяя водород.

КПД менее 8%, медленные процессы.

Способы хранения водорода.

Основной недостаток водорода как топлива — низкая плотность (около 0.06 кг/м^3)

- 1. В чистом виде:
- в сжатом состоянии,
- в сжиженном состоянии (температура конденсации 20 К).

- 2. В химических соединениях:
- адсорбции,
- соединения с сильной водородной связью (метанол, этанол и др.)

• в виде металлогидридов

Используют следующие оценки эффективности систем хранения водорода:

- массовая емкость, кг/кг
- объемная емкость, $\kappa \Gamma / M^3$
- эффективность цикла,
- потери водорода в режиме длительного хранения.

Хранение водорода под давлением:

- 1. В алюминиевых баллонах 150 л при давлении 500 атм вмещает 6 кг водорода (860 МДж энергии) при сумарной массе 90 кг (массовая емкость 6,7%).
- 2. Подземные структуры.
- 3. Магистральный газопровод длиной 1000 км, диаметром 1,2 м и давлением 60 атм содержит 1000 ТДж энергии.

Хранение водорода при низких температурах.

Для конденсации 1 кг водорода необходимо затратить около 40 МДж энергии.

Плотность жидкого водорода 71 кг/м³.

Хранение водорода в адсорбированном состоянии.

Водород хорошо адсорбируется углем.

Углеродные нанотрубки при температуре 120К и давлении 0,4 атм достигают массового содержания водорода около 10%.

Хранение водорода в химическисвязанном состоянии (в гидридах).

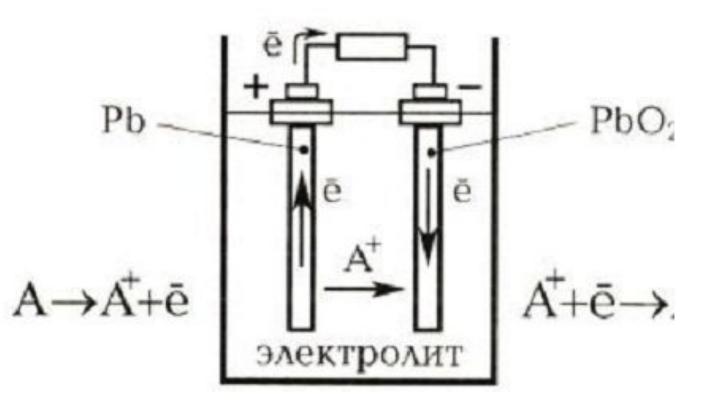
Предъявляемые требования:

1. Высокая емкость — плотность жидкого водорода 71 кг/м³, содержание водорода в аммиаке (NH_3) — 111 кг на $1m^3$, содержание водорода в гидразине (N_2H_4) — 126 кг на $1m^3$.

- 2. Низкая энергия образования гидрида энергия выделяемая при сжигании водорода 143 МДж, энергия разложения аммиака 15,4 МДж (эффективность цикла 90%).
- 3. Обратимость реакции.
- 4. Быстрота протекании реакции без катализаторов и особых условий.
- 5. Разделимость продуктов реакции.

Хранение водорода в металлогидридах.

$$FeTiH_{1,7} \xrightarrow{t \approx 50^{o} C} FeTiH_{0,1} + 0.8H_{2}$$


Таблица 9.3. Концентрация водорода в различных гидридах

Вещество	Массовое содержание H ₂ в гидриде,%	Массовое содержание H_2 в гидриде, кг/м ³	Плотность энергии, МДж/кг	Плотность энергии, ГДж/м ³
Н ₂ (жидкость)	100	71	143	10,2
H ₂ (газ при 1 атм и 0 °C)	100	0,089	143	0,013
LaH ₃	2,1	108	3,0	15,4
MgH_2	7,6	101	10,0	14,4
TiH ₂	4,0	153	5,7	21,9
VH ₂	3,8	95	3,0	13,6
ZrH ₂	2,1	122	3,0	17,4
LaNi ₅ H ₅	8,7	89	2,0	12,7
Mg ₂ NiH ₄	3,6	81	4,5	11,6
TiFeH _{1,95}	1,85	101	2,6	14,4

Электрохимическое аккумулирование

Свинцово-кислотный аккумулятор состоит из двух пластинок-электродов (свинец и диоксид свинца), помещенных в проводящий раствор-электролит (серная кислота).

$$H_2SO_4 \to H^+ + HSO_4^-$$

$$Pb + HSO_4^- \to PbSO_4 + H^+ + 2e^-$$

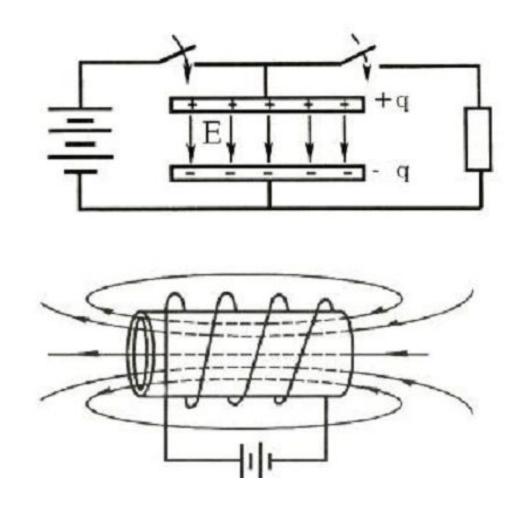
$$PbO_2 + HSO_4^- + 3H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$$

Достоинства свинцово-кислотного аккумулятора:

- 1. Простота обслуживания
- 2. Стабильность напряжения при изменении температуры и нагрузки

Свинцово-кислотный аккумулятор имеет ряд недостатков:

1. низкая плотность энергии на единицу веса аккумулятора,

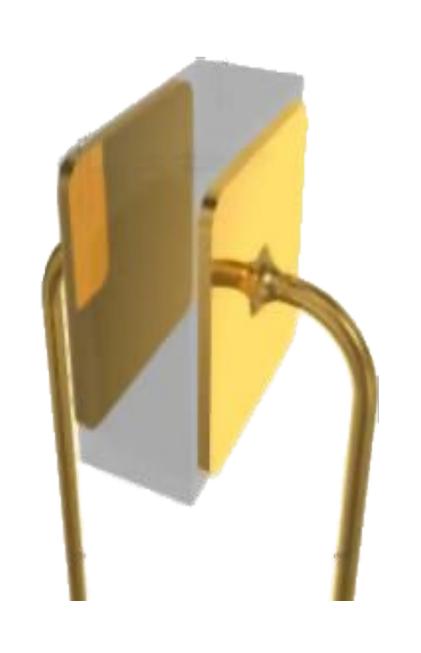

(≈0,06 МДж/кг – 15% от идеального кислотно-свинцового аккумулятора)

- 2. низкий КПД (не допускается полное разряжение),
 - 3. небольшой срок службы.
- 4. вырабатывает постоянный ток.

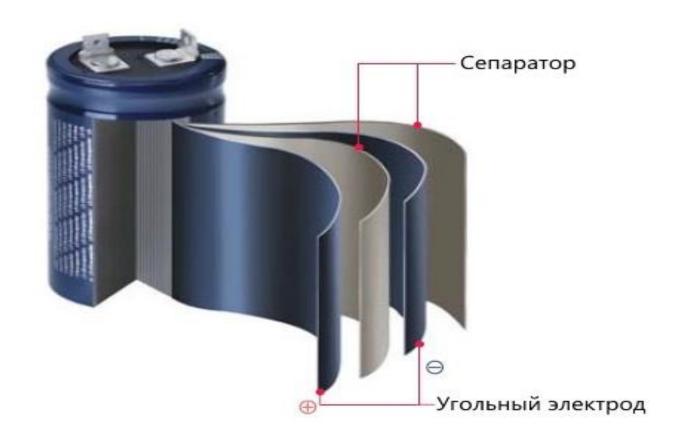
Электрохим иче	ские систем	ы аккумуля	торов	
Название аккумулятора	Положительные	Электролит	34C, B	Отрицательные
Свинцовый	Pb0 ₂	H ₂ SO ₄	2,1	Pb
Серебряно-цинковый	AgO	KOH	1,85	Zn
Никель-цинковый	Ni(OH) 3	KOH	1,85	Zn
Серебряно-кадмиевый	AgO	KOH	1,41	Cd
Железо-никелевый	Ni(OH) 3	KOH	1,4	Fe
Кадмиево-никелевый	Ni(OH) 3	KOH	1,36	Cd

Электрическое аккумулирование

Электроаккумуляторы делятся на электростатические и индуктивные.


Достоинства –

- простота,
- небольшой вес,
- качественная аккумулируемая энергия.


Недостатки –

- низкая плотность энергии на единицу объема,
- самопроизвольная разрядка.

Конденсатор – устройство для накопления заряда и энергии электрического поля. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, свёрнутые в цилиндр или параллелепипед.

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе.

Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь.

По виду диэлектрика различают:

- 1. вакуумные (между обкладками находится вакуум).
- 2. с газообразным диэлектриком.
- 3. с жидким диэлектриком.
- 4. с твёрдым неорганическим диэлектриком: стеклянные, слюдяные, керамические.
- 5. с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные.
- 6. Электролитические.

Электролитические конденсаторы отличаются от всех прочих типов большой удельной ёмкостью.

В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит, или слой полупроводника, нанесённый непосредственно на оксидный слой.

Время наработки на отказ – 3000-5000 часов при максимально допустимой температуре около 100С.

Суперконденсатор (электрохимический конденсатор, ионистор) — это гибрид химической аккумуляторной батареи и обычного конденсатора.

Главное отличие суперконденсатора от привычного конденсатора — в наличии у первого не просто диэлектрика между электродами, а двойного электрического слоя. В результате между электродами образуется очень маленькое расстояние, а его возможность накапливать электрическую энергию получается намного выше.

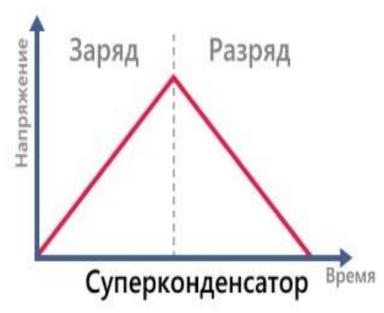
Электростатический Электролитический С двойным электрическим слоем dx Α e, $E = \frac{V}{d}$ Электрод Разделитель Активированный уголь Ε

Преимущества:

- 1. Большие максимальные токи зарядки и разрядки.
- 2. Малая деградация даже после сотен тысяч циклов заряда/разряда.
- 3. Высокое внутреннее сопротивление у большинства ионисторов (препятствует быстрому саморазряду, а также перегреву и разрушению).
- 4. Ионистор обладает длительным сроком службы (около 40000 часов с незначительным снижением емкости).

- 5. Малый вес по сравнению с электролитическими конденсаторами подобной ёмкости.
- 6. Низкая токсичность материалов (кроме органических электролитов).
- 7. Неполярность.
- 8. Малая зависимость от окружающей температуры: могут работать как на морозе, так и на жаре.
- 9. Большая механическая прочность: выносят многократные перегрузки.

Недостатки:


- 1. Высокая цена ионисторов с большими разрядными токами.
- 2. Напряжение напрямую зависит от степени заряженности.
- 3. Низкое рабочее напряжение по сравнению с большинством конденсаторов других типов.
- 4. Больший саморазряд, по сравнению с электрохимическими аккумуляторами.
- 5. Меньше скорость отдачи заряда по сравнению с обычными конденсаторами.

Типовые характеристики суперконденсаторов в сравнении с другими накопителями энергии

	Электролитиче		
	СКИЙ	Суперконденса	Аккумуляторна
Характеристика	конденсатор	тор	я батарея
Время разрядки	10 ⁻⁶ - 10 ⁻³ секунд	1 - 30 секунд	0,3 - 4 часа
Время зарядки			
	10 ⁻⁶ - 10 ⁻³ секунд	минуты	0,5 - 5 часов
Удельная			
энергоемкость			
(Вт*ч/кг)	< 0.1	0.1 1	30 100
Удельная			
мощность			
(Вт/кг)	> 10 000	1 000 2 000	50 200
кпд	≈ 1	0.9 0.95	0.7 0.85
Ресурс	> 500 000	> 500 000	500 2 000

Суперконденсатор и аккумуляторная батарея имеют различные зарядно-разрядные характеристики. У аккумуляторной батареи график имеет характерную область постоянного напряжение, тогда как у суперконденсатора зависимость напряжения от времени заряда/разряда пинейная

С мая 2017 в Минске эксплуатируют первые белорусские электробусы Белкоммунмаш E433 Vitovt Max Electro. Электробусы "заправляются" на трёх зарядных станциях, расположенных в конечных точках маршрутов. Зарядка током 500 ампер длится 5-8 минут. Пустой электробус на одном заряде проезжает 20 км.

Ионисторы производит ООО «Чэнду Синьджу Шелковый Путь Развитие» в китайско-белорусском индустриальном парке «Великий камень».

Аккумулирующие системы и их характеристики

Система	Плотност энергии	ГЬ	Удельная стоимость, долл./МДж	Коэффици ент отдачи	
	МДж/кг	МДж/л	A03131./ 14174/10	энергии, %	
Тепловая					
1.с насыщ. и ненасыщ.					
жидкостью	0,2	0,2	0,01-0,3	70-90	
2.с твердым телом					
(чугун)	0,05	0,4	5	50-90	
3.с фазовым перехо-дом					
$(\text{пар } p = 15 \text{ M}\Pi\text{a})$	2,2	0,02	0,1	60-70	
4.Сорбционная	0,25	0,29	0,5	70-80	
Теплохимическая водородная при $p = 15 \ \mathrm{M}\Pi\mathrm{a}$	140	1	0,1-10	40-60	

Система	Плотность		Удельная	Коэффицие
	энергии		стоимость,	нт отда-чи
	МДж/кг	МДж/л	долл./МДж	энер-гии, %
Электрическая				
.конденсаторы	-	10^{-6}		70-80
.электромагниты	-	10^{-3}		90-95
Электрохимическая				
.свинцово-кислотная	0,1	0,29	10	70-80
.натрий-серная	0,65	350	10	70-80
литиева-титановая				
(Li/NiS ₂)	0,48	-	10	70-80
Механическая				
.гидравлическая	0,001	0,001	13	70-80
.инерционная	0,05	0,15-0,4	20	75-85
.пневматическая				
(воздух при $p=2$ МПа)	0,02-2	2	3	45-50