
Lecture 7

Complied by
Aizhan Altaibek

Programming on Python

Regular expression

Intro to Python for Data
Science

Regular Expression

2

3

WHAT IS A REGULAR EXPRESSION?
A Regular Expression (RegEx) is a sequence of characters that
defines
a search pattern.
For example,

^a...s$

The above code defines a RegEx pattern.
The pattern is: any five letter string starting with a and
ending with s.

4

A pattern defined using RegEx can be used to match against a
string.

Expression String Matched?

^a...s$

abs No match
alias Match
abyss Match
Alias No match
An abacus No match

5

Python has a module named re to work with RegEx. Here's an
example:

import re

pattern = '^a...s$’
test_string = 'abyss’
result =
re.match(pattern,
test_string)

if result:
print("Search
successful.")
else: print("Search
unsuccessful.")

Here, we used re.match() function to search pattern within
the test_string.
The method returns a match object if the search is successful. If not, it
returns None.

6

THERE ARE OTHER SEVERAL FUNCTIONS DEFINED IN
THE RE MODULE TO WORK WITH REGEX. BEFORE WE EXPLORE
THAT, LET'S LEARN ABOUT REGULAR EXPRESSIONS.

7

SPECIFY PATTERN USING REGEX
To specify regular expressions, metacharacters are
used.

In the previous example, ^ and $ are
metacharacters.

8

METACHARACTERS
METACHARACTERS ARE CHARACTERS THAT ARE
INTERPRETED IN A SPECIAL WAY BY A REGEX ENGINE. HERE'S
A LIST OF METACHARACTERS:

[] . ^ $ * + ? {} () \ |

9

METACHARACTERS
[] - Square
brackets
Square brackets specifies a set of characters you wish to match.

Expression String Matched?

[abc]

a 1 match
ac 2 matches
Hey Jude No match
abc de ca 5 matches

Here, [abc] will match if
the string you are trying to
match contains any of
the a, b or c.

10

METACHARACTERS
You can also specify a range of characters using - inside square brackets.

•[a-e] is the same as [abcde].
•[1-4] is the same as [1234].
•[0-39] is the same as [01239].

You can complement (invert) the character set by using caret ^ symbol at
the start of a square-bracket.

•[^abc] means any character except a or b or c.
•[^0-9] means any non-digit character.

11

METACHARACTERS
. - Period

A period matches any single character (except
newline '\n').
Expression String Matched?

..

a No match

ac 1 match
acd 1 match

acde 2 matches (contains 4
characters)

12

METACHARACTERS
^ - Caret

The caret symbol ^ is used to check if a string starts with a certain
character.

Expression String Matched?

^a
a 1 match
abc 1 match
bac No match

^ab

abc 1 match

acb No match (starts with a but
not followed by b)

13

METACHARACTERS
$ - Dollar
The dollar symbol $ is used to check if a string ends with a certain
character.

Expression String Matched?

a$
a 1 match
formula 1 match
cab No match

14

METACHARACTERS
* - Star

The star symbol * matches zero or more occurrences of the pattern
left to it.

Expression String Matched?

ma*n

mn 1 match
man 1 match
maaan 1 match

main No match (a is not followed by n)

woman 1 match 15

METACHARACTERS
+ - Plus
The plus symbol + matches one or more occurrences of the pattern
left to it.

Expression String Matched?

ma+n

mn No match (no a character)

man 1 match
maaan 1 match

main No match (a is not followed by n)

woman 1 match 16

METACHARACTERS
? - Question Mark
The question mark symbol ? matches zero or one occurrence of the pattern
left to it.
Expression String Matched?

ma?n

mn 1 match
man 1 match

maaan No match (more than one a character)

main No match (a is not followed by n)

woman 1 match

17

METACHARACTERS
{} - Braces
Consider this code: {n,m}.
This means at least n, and at most m repetitions of the pattern
left to it.

Expression String Matched?

a{2,3}

abc dat No match
abc daat 1 match (at daat)

aabc daaat 2 matches (at aabc and daaat)

aabc daaaat 2 matches (at aabc and daaaat)

18

METACHARACTERS
Let's try one more example. This RegEx [0-9]{2, 4} matches at least 2 digits but not
more than 4 digits

Expression String Matched?

[0-9]{2,4}

ab123csde 1 match (match at
ab123csde)

12 and 345673 3 matches (12, 3456, 73)

1 and 2 No match

19

METACHARACTERS
| - Alternation
Vertical bar | is used for alternation
(or operator).

Expression String Matched?

a|b

cde No match

ade 1 match (match at ade)

acdbea 3 matches (at acdbea)

Here, a|b match any string that contains
either a or b

20

METACHARACTERS() - Group
Parentheses () is used to group sub-patterns. For example, (a|b|c)xz match
any string that
matches either a or b or c followed by xz

Expression String Matched?

(a|b|c)xz

ab xz No match

abxz 1 match (match at abxz)

axz cabxz 2 matches (at axz cabxz)

21

METACHARACTERS
\ - Backslash
Backlash \ is used to escape various characters including all
metacharacters.

For example,
\$a match if a string contains $ followed by a. Here, $ is not interpreted
by a RegEx engine in a special way.
If you are unsure if a character has special meaning or not, you can put \ in
front of it. This makes sure the character is not treated in a special way.

22

SPECIAL SEQUENCES
Special sequences make commonly used patterns easier to write. Here's a
list of special sequences:

\A - Matches if the specified characters are at the start of a
string.

Expression String Matched?

\Athe
the sun Match
In the sun No match

23

SPECIAL SEQUENCES
\b - Matches if the specified characters are at the beginning or end of
a word.

Expression String Matched?

\bfoo

football Match
a football Match

afootball No match

foo\b

the foo Match
the afoo test Match

the afootest No match

24

SPECIAL SEQUENCES
\B - Opposite of \b. Matches if the specified characters are not at the beginning or end
of a word.

Expression String Matched?

\Bfoo
football No match
a football No match
afootball Match

foo\B
the foo No match
the afoo test No match
the afootest Match

25

SPECIAL SEQUENCES
\d - Matches any decimal digit. Equivalent
to [0-9]

Expression String Matched?

\d
12abc3 3 matches (at 12abc3)
Python No match

\D - Matches any non-decimal digit. Equivalent
to [^0-9]

Expression String Matched?

\D
1ab34"50 3 matches (at 1ab34"50)
1345 No match

26

SPECIAL SEQUENCES
\s - Matches where a string contains any whitespace character. Equivalent to [
\t\n\r\f\v].

Expression String Matched?

\s
Python RegEx 1 match
PythonRegEx No match

\S - Matches where a string contains any non-whitespace character. Equivalent to [^
\t\n\r\f\v].

Expression String Matched?

\S
a b 2 matches (at a b)
 No match

27

SPECIAL SEQUENCES
\w - Matches any alphanumeric character (digits and alphabets). Equivalent
to [a-zA-Z0-9_].
By the way, underscore _ is also considered an alphanumeric character.

Expression String Matched?

\w
12&": ;c 3 matches (at 12&": ;c)
%"> ! No match

\W - Matches any non-alphanumeric character. Equivalent
to [^a-zA-Z0-9_]

Expression String Matched?

\W
1a2%c 1 match (at 1a2%c)
Python No match

28

SPECIAL SEQUENCES
\Z - Matches if the specified characters are at the end of a
string.

Expression String Matched?

Python\Z
I like Python 1 match
I like Python Programming No match
Python is fun. No match

29

SPECIAL SEQUENCES
Tip: To build and test regular expressions, you can use RegEx
tester tools such as regex101.com. This tool not only helps you in
creating regular expressions, but it also helps you learn it.

Now we understand the basics of RegEx, let’s learn how to use
RegEx in Python code.

30

PYTHON REGEX
Python has a module named re to work with regular
expressions.
To use it, we need to import the module.

import re

The module defines several functions and constants to work with
RegEx.

31

PYTHON REGEX
re.findall()
The re.findall() method returns a list of strings
containing all matches.
Example 1: re.findall()
Program to extract numbers
from a string
import re
string = 'hello 12 hi 89. Howdy 34’
pattern = '\d+’
result = re.findall(pattern, string)
print(result) # Output: ['12', '89', '34’]

If the pattern is not found, re.findall() returns
an empty list.

32

PYTHON REGEX
re.split()
The re.split method splits the string where there is a match and returns a list of
strings
where the splits have occurred.Example 2: re.split()
import re
string = 'Twelve:12 Eighty nine:89.’
pattern = '\d+’
result = re.split(pattern, string)
print(result)
Output: ['Twelve:', ' Eighty nine:', '.’]

If the pattern is not found, re.split() returns a list containing the
original string. 33

PYTHON REGEXYou can pass maxsplit argument to the re.split() method. It's the maximum
number of splits that will
occur.

import re
string = 'Twelve:12 Eighty nine:89 Nine:9.’
pattern = '\d+' # maxsplit = 1 # split only at the first
occurrence
result = re.split(pattern, string, 1)
print(result)
Output: ['Twelve:', ' Eighty nine:89 Nine:9.’]

By the way, the default value of maxsplit is 0; meaning all possible splits. 34

PYTHON REGEX
re.sub()
The syntax of re.sub() is:
re.sub(pattern, replace, string)

The method returns a string where matched occurrences are replaced with
the content of replace variable.

35

PYTHON REGEXExample 3: re.sub()
Program to remove all
whitespaces
import re
multiline string
string = 'abc 12\ de 23 \n f45 6’
matches all whitespace
characters
pattern = '\s+’
empty string
replace = ‘’
new_string = re.sub(pattern,
replace, string)
print(new_string)
 # Output: abc12de23f456

If the pattern is not found, re.sub() returns the
original string.

36

PYTHON REGEXYou can pass count as a fourth parameter to
the re.sub() method.
If omitted, it results to 0. This will replace all occurrences.

import re
multiline string
string = 'abc 12\ de 23 \n f45 6’
matches all whitespace
characters
pattern = '\s+’
replace = ‘’
new_string = re.sub(pattern,
replace, string, 1)
print(new_string)

Output:
abc12\ de 23
f45 6

37

PYTHON REGEX
re.subn()
The re.subn() is similar to re.sub() expect it returns a tuple of 2 items
containing the
new string and the number of substitutions made.Example 4: re.subn()

Program to remove all
whitespaces
import re
multiline string
string = 'abc 12\ de 23 \n
f45 6’
matches all whitespace
characters
pattern = '\s+’
empty string
replace = ‘’
new_string =
re.subn(pattern,
replace, string)
print(new_string)
Output:
('abc12de23f456', 4)

38

PYTHON REGEX
re.search()

The re.search() method takes two arguments: a pattern and a string.
The method looks for the first location where the RegEx pattern produces a
match
with the string.
If the search is successful, re.search() returns a match object; if not,
it returns None.

match = re.search(pattern, str)

39

PYTHON REGEX
Example 5: re.search()
import re
string = "Python is
fun"
check if 'Python' is at
the beginning
match =
re.search('\APython',
string)
if match:
print("pattern found
inside the string")
else:
print("pattern not
found")
Output: pattern
found inside the
string

Here, match contains a match
object.

40

MATCH OBJECT
You can get methods and attributes of a match object using dir() function.
Some of the commonly used methods and attributes of match objects are:match.group()
The group() method returns the part of the string where there is a
match.
Example 6: Match object
import re string = '39801 356, 2102 1111’
Three digit number followed by space
followed by two digit number
pattern = '(\d{3}) (\d{2})’
match variable contains a Match
object.
match = re.search(pattern, string)
if match:
print(match.group())
else: print("pattern not found")
Output: 801 35

Here, match varia
ble contains a match
object.

41

MATCH OBJECT
match.start(), match.end() and match.span()
The start() function returns the index of the start of the matched substring.
Similarly, end() returns the end index of the matched substring.

>>> match.start()
2
>>> match.end()
8

The span() function returns a tuple containing start and end index of the
matched part.
>>> match.span()
(2, 8) 42

MATCH OBJECT
match.re and match.string
The re attribute of a matched object returns a regular expression
object.
Similarly, string attribute returns the passed string.

>>> match.re
re.compile('(\\d{3}) (\\d{2})’)
>>> match.string
'39801 356, 2102 1111'

43

USING R PREFIX BEFORE REGEX
When r or R prefix is used before a regular expression, it means raw string. For example, '\n' is a
new line whereas r'\n' means two characters: a backslash \ followed by n.
Backlash \ is used to escape various characters including all metacharacters. However, using r prefix
makes \ treat as a normal character.

Example 7: Raw string using r prefix
import re
string = '\n and \r are
escape sequences.’
result =
re.findall(r'[\n\r]',
string)
print(result)
Output: ['\n', '\r']

44

