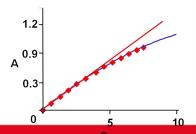
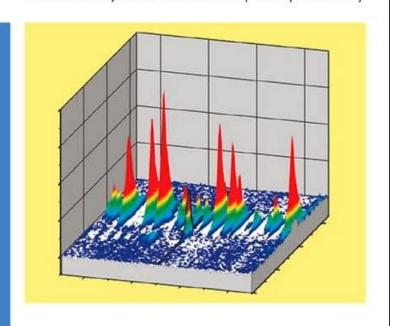

линейка ContrAA® – перепроверка потенциала


Основы ААС

- атомы в основном энергетическом абсорбируют энергию
- возбужденные атомы **испускают** энергию
- эта энергия определенная (линии)
- линии характерны для каждого элемента
- атомы, которые появляются в пламени поглощают свет atoms produced in the flame can absorb light (дискретная энергия)
- ослабление I₀ пропорционально количеству атомов пламени

• количественное определение с помощью калибровки (Beer-Lambert's law)

Пупышев А.А.


Атомно-абсорбционный спектральный анализ

РИЦ Техносфера, 2009 г. ISBN 978-5-94836-231-1

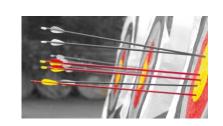
B. Welz, H. Becker-Ross, S. Florek, U. Heitmann WILEY-VCH

High-Resolution Continuum Source AAS

The Better Way to Do Atomic Absorption Spectrometry

High-Resolution
Continuum Source AAS

by Bernhard Welz, Helmut Becker-Ross, Stefan Florek, Uwe Heitmann


Bernhard Welz

Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil

Что заказчики ожидают

- решение их аналитических задач
- высокую производительность
- высокую точность
- удобство работы
- надежность спектрометра
- современную разработку методик
- низкую стоимость прибора и эксплуатационных расходов

целевые направления в индустрии

- охрана окружающей среды и водоподготовка
- химическая и фармацевтическая промышленности
- материаловедение
- нефтепереработка и возобновляемые источники энергии
- геология и металлургия
- переработка и утилизация мусора

Успех в продажах – командная работа

1. contrAA®

- необходимо инструмент
- источник дополнительной информации

2. Коррекция неселективного поглощения

- зачем нам нужна коррекция фона
- contrAA® делает это правильно

3. Ожидаемые свойства

- мульти элементный скрининговый рутинный анализ
- определение неметаллов
- одновременный мульти элементный анализ
- работа со сложными матрицами

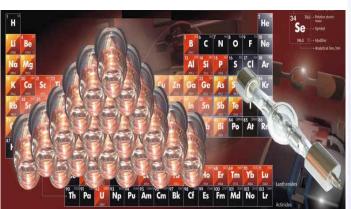
1. contrAA® - a family with potential

contrAA® 600 furnace

contrAA® 700 furnace+flame

contrAA® 300 flame

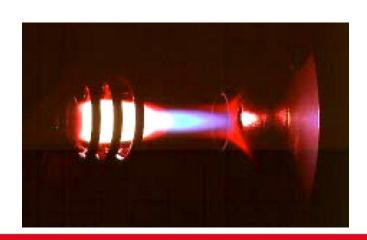
Методы элементного анализа

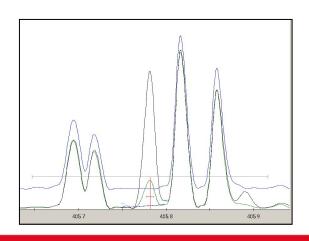

analytikjena

ААС – метод, существующий более 50 лет

- Простота
- Высокая селективность
- Надежность
- Относительно низкая стоимость
- Невысокие операционные затраты

- Одноэлементный метод
- На каждый элемент требуется лампа
- Неприменим для многоэлементного анализа
- Ограничения в коррекции фона




Methods for element analysis

ICP OES – активно продвинут в 1990 и 2000 годах

- Мульти элементный
- Широкий диапазон конц.
- быстрый и гибкий
- спектрально информационный

- Спектральные наложения
- Трудности в оценке результатов
- Большое потребление аргона
- **НО !!-** Большие эксплуатационные расходы
 - Не выгодно для небольшого числа элементов



contrAA® -преимущества

analytikjena

источник света

Уникальные особенности contrAA®

analytikjena

Дуговая ксеноновая лампа → непрерывный спектр в диапазоне длин волн 190-900 нм. Одна лампа на все элементы!

Эшелле монохроматор высокого разрешения по схеме Литтрова — вырезаем из сплошного спектра нужную нам длину волны

ССD-детектор \rightarrow состоит из 512 пикселей, дисперсия 2 пм/пиксель. Контур аналитической линии описывается несколькими пикселем.

Разрешение:

волны 200 нм

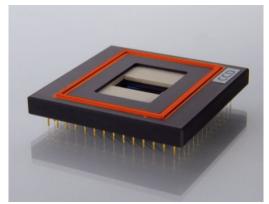
 $R_{cn} = \lambda/\Delta\lambda = 145\ 000$ 2 пм на пиксель при длине

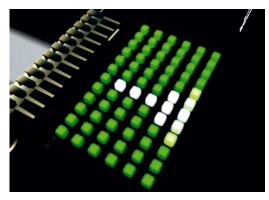
Принципиальная схема спектрофотометра

Источник сплошного спектра

- предустановленная **Xe-arc лампа** в водно-охлаждаемой рубашке
- излучаемый свет **постоянно** между 190- 900 nm
- все AAS-элементы могут быть определены с помощью одной лампы
- доп. элементы как F, Cl, S и P определяются с помощью характерной молекулярной абсорбции
- дополнительно (как бонус) анализ по альтернативным линиям (для концентрированных образцов) снижает усилия по мокрой химии

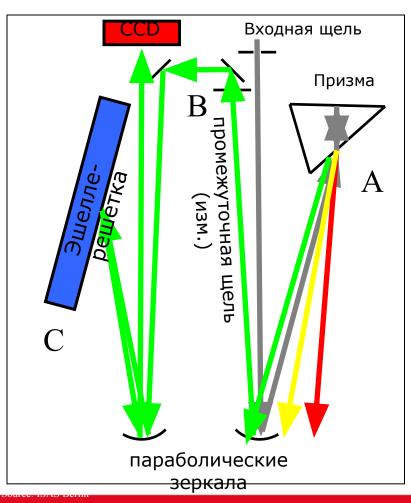
analytikjena





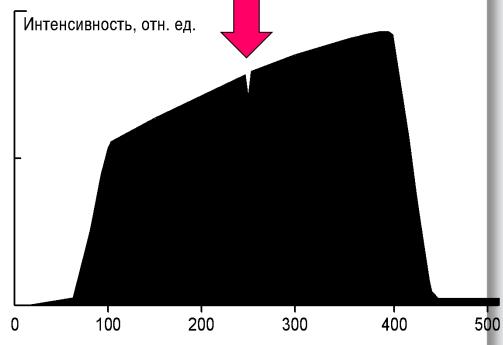
ССD-детектор: новая технология детектирования

analytikjena



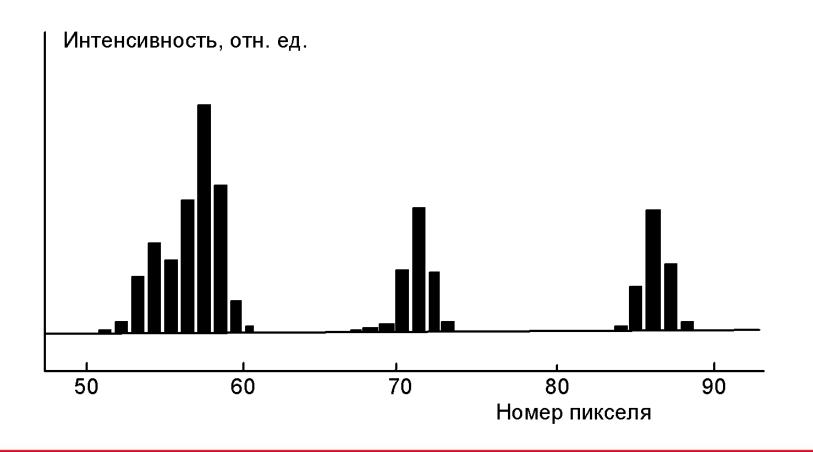
Минимальные чувствительные полупроводниковые элементы детектора (пиксели) имеют ширину микронных размеров и высоту от 12 мкм до 1 мм. Контур линии регистрируется несколькими пикселями.

Оптическая схема AA спектрометра с двойным Эшелле -монохроматором


- А. Свет поступает через входную щель, отражается от зеркала, проходит через поворотную призму и выходит обратно, уже будучи разложенным на спектр.
- В. Свет вырезанной части спектра вновь отражается от зеркальной поверхности, проходит через систему зеркал и объективов и направляется на дифракционную решётку.
- С. С помощью дифракционной решётки свет снова разлагается на составляющие, затем область спектра шириной чуть более одного нанометра поступает на диодно-матричный детектор.

Разрешение, достигаемое с помощью двойного монохроматора и CDD-детектора 2 пм.

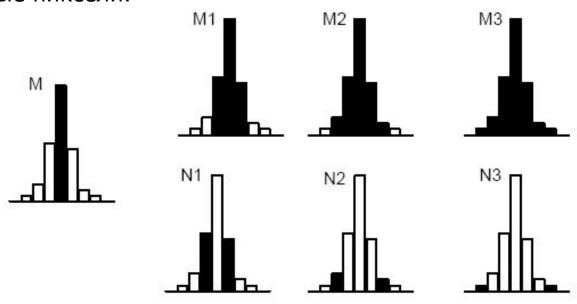
Одновременно выделяемый спектральный интервал около 1 нм вокруг аналитической линии.


Спектральное разрешение до 140000. Это обеспечивает ширину спектральной полосы пропускания менее 2 пм на пиксель при длине волны 200 нм.

Разрешение обусловлено монохроматором!

Калибровка и стабилизация длины волны монохроматора осуществляется по встроенной неоновой лампе. В каждый выделяемый спектральный интервал попадает не менее 2 спектральных линий неона.

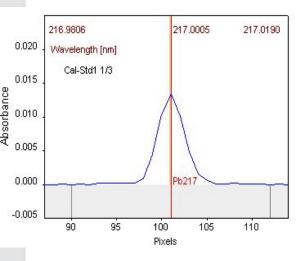
analytikjena Триплет спектральной линии Fe I 310 нм (309.997, 310.030 и 310.067 нм), зарегистрированный линейной сборкой детекторов ССD (наблюдение сигналов индивидуальных пикселей)

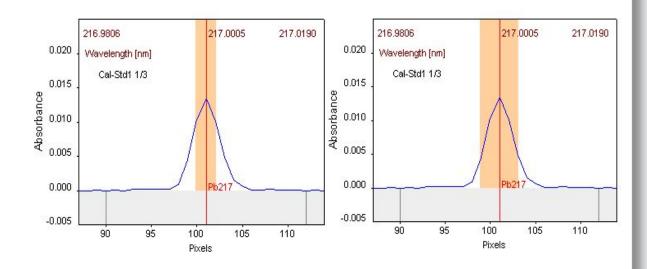


Динамическая чувствительность

analytikjena

Улучшение чувствительности определений наблюдается при повышении числа центральных пикселей (М1, М2, М3, М4, от которых регистрируется суммарный сигнал атомного поглощения. При регистрации суммарного сигнала с трех и более центральных пикселей.


Расширение динамического диапазона градуировочного графика достигается при регистрации суммарного сигнала с пар пикселей, фиксирующих края контура линии поглощения: N1, N2, N3 и т.д. - боковые пиксели.


Нужна более высокая чувствительность?

analytikjena

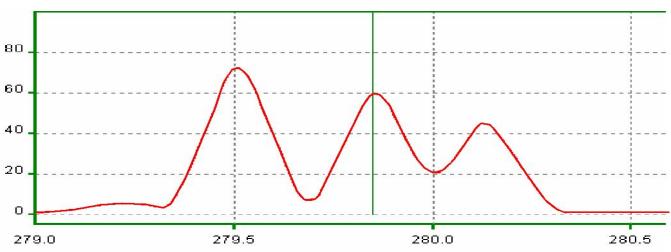
Количество детекторов (пикселей) можно выбрать!

1 пиксель 0,013 A

3 пикселя 0,034 A

5 пикселей 0,043 A

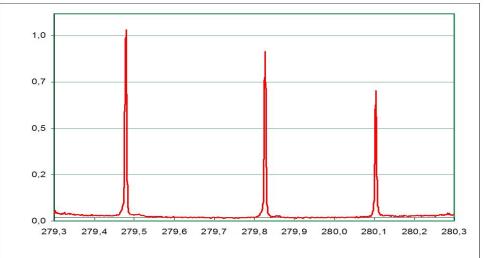
Увеличение в 2,6 раза


Увеличение в 3,3 раза

Monochromator resolution LS AAS vers. HR-CS AAS

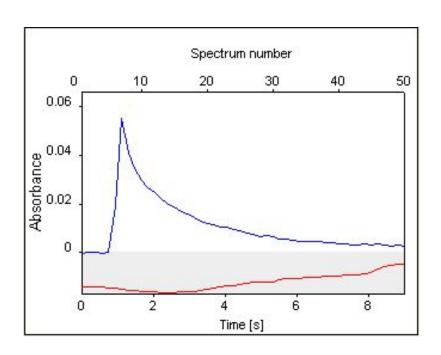
LS AAS Emission scan

Mn – Triplet:


279.4817 nm 279.8269 nm 280.0850 nm

CS AAS Absorption spectra

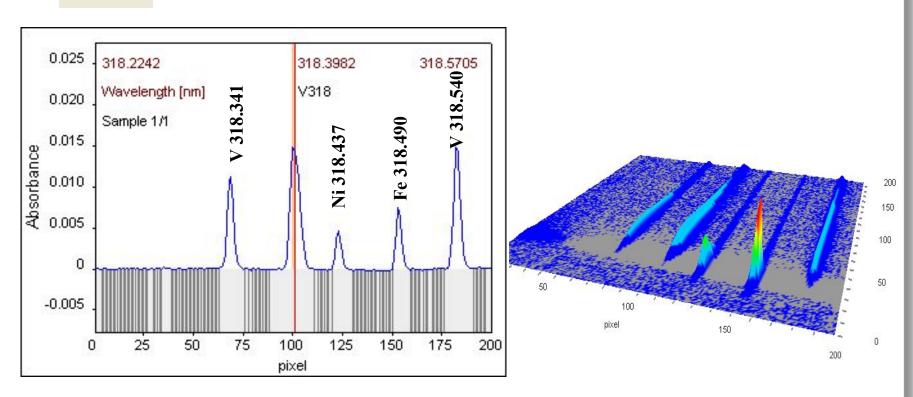
Resolution factor 100


better than LS AAS !!!

Определение ванадия в сточной воде

analytikjena

V318



Информация получаемая с помощью традиционной LS AAS

Определение ванадия в сточной воде

analytikjena

V318

More information content in contrAA®

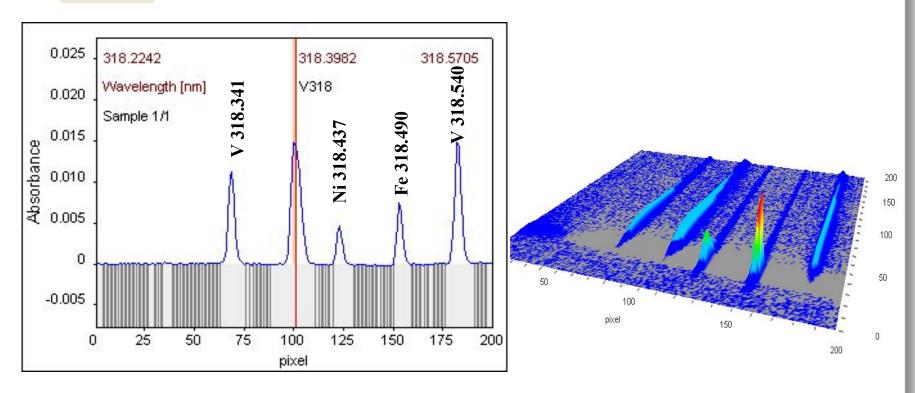
Resolution – spectral interferences

Analyt	Wavelength (nm)	Disturbing elements	Wavelength (nm)	λ-Difference (pm)
Se	196.03	Fe	196.060	30
As	193.70	Fe	193.670	30
Zn	213.856	Fe	213.859	3
Cd	228.80	As	228.810	10
		Fe	228.720	80
Ni	232.00	Fe	232.040	40
Sn	224.605	Pb	224.690	85
		Fe	224.565	40
Mn	279.48	Fe	279.470	10
Cu	324.75	Fe	324.600	15
Al	396.15	Fe	396.110	40

contrAA® -преимущества

analytikjena

- источник света
- уникальный дизайн спектрометра
- визуализация АА линии и спектрального окружения
- ✓Одновременная коррекция фона

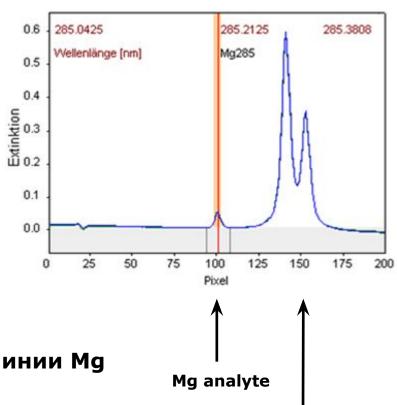


Уникальная визуализация АА спектра

analytikjena

Определение ванадия в сточной воде

V318



More information content in contrAA®

Уникальная визуализация АА спектра

analytikjena

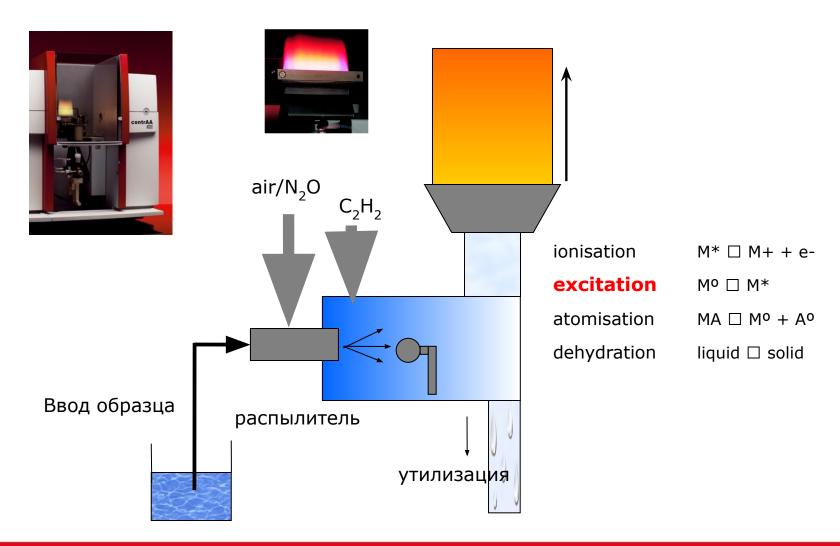
- сигнал Mg в растворе для внутривенного вливания сдержит ~ 0.9 % NaCl
- выступающая **абсорбция фона** (off-set) из-за рассеивания света в пламени
- Mg (285.2125 nm) прекрасно разделен от Na-дуплета (285.281/285.301 nm) матрицы
- взгляд на **спектральное окружение линии Мg** Позволяет убедиться
 - ✓ правильный выбор коррекции фона
 - **✓** корректные результаты

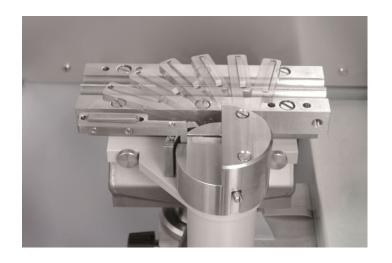
matrix absorption

contrAA® -преимущества

analytikjena

- источник света
- уникальный дизайн спектрометра
- визуализация АА линии и спектрального окружения
- ✓ Одновременная коррекция фона
- ✓ аналитические инструменты (atomisers, auto sampler etc.)

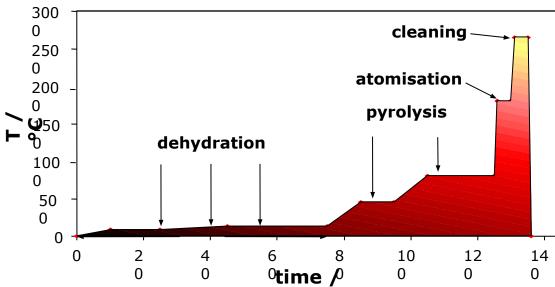




Аксессуары для пламени

полезные АКСЕССУАРЫ

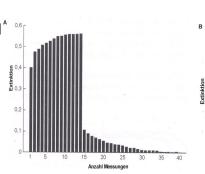
Приставка на горелку НРТ


СКРЕБ ОК

АВТОДОЗАТ ОРЫ

графитовая печь

- автоматическая **дозировка µL-образца** в печы
- Камера внутри печи показывает процесс сушки
- сенсор контроля температуры (STC)
- управление ПО температурных программ





Полезная информация, необходимо знать...

- поперечный нагрев печи
- ✓ постоянная температура по длине оптического пути
- ✓ little gas phase interferences and homogeneous atomisation conditions
- ✓ более низкая температура атомизации
- ✓ больший срок жизни трубки
- ✓ отсутствие градиента температур
- ✓ меньшее время выхода на режим между а^ˆ
 измерениями (нет эффекта памяти)
 - blank measurementsafter analysis of 0.8 ng Mg

Longitudinally heated furnace

Transversely heated furnace

акссесуары

- auto sampler AS 51S (flame)
- ✓ до 87 образцов по 15, 30 и 50 mL
- ✓ автоматическая калибровка и перекалибровка
- auto sampler **AS 52S** (flame)
- ✓ похож на AS 51, дополнительно
- ✓ безлимитная автоматическая калибровка
- ✓ «умное» разбавление и промывка
- ✓ дозировка модификатора, буферов, defoamer etc.
- auto sampler MPE (furnace)
- ✓ надежная дозировка микро количеств µL
- ✓ «умное» разбавление и автоматическое обогащение образца
- ✓ автоматическая калибровка и перекалибровка
- solidAA® (direct solid sampler)

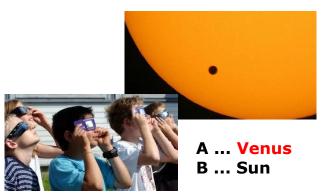
analytikjena

- гидридные системы (quartz cell)
- ✓ hydride generator for elements like Hg, As, Se
- ✓ introduction of hydride sample into atomiser
- ✓ batch and flow injection mode
- hydrEA (furnace)
- ✓ combination of hydride generator to furnace
- ✓ trapping of hydride on Ir-coating within tube
- ✓ less sample volume, better sensitivity
- ✓ enrichment for all hydride elements

contrAA® -преимущества

analytikjena

- источник света
- уникальный дизайн спектрометра
- визуализация АА линии и спектрального окружения
- ✓Одновременная коррекция фона
- инструменты (atomisers, auto sampler etc.)
- анализ сложных для спектроскопии матриц

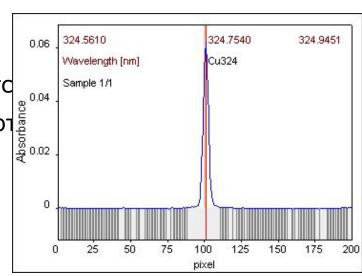

2. Коррекция неселективного поглощения

- зачем нам нужна коррекция
- contrAA® это делает правильно!

$$(A + B) - B = A$$

- абсорбция фона
 - ✓ распространенный феномен в спектроскопии
 - ✓ присутствие нежелательных спектральных наложений (фон)
 - У ухудшает распознавание аналита
 - ✓ разрешение спектрометра зависит от способности выделить фон

Ручная коррекция

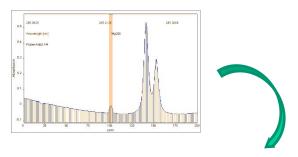

- коррекция фона значит измерение бланка или референсного значения
 - ✓ одно или двулучевая конфигурация (инструмент)
 - ✓ последовательная или одновременная коррекция ВGC (инструмент, ПО)
 - ✓ статическая или динамическая коррекция фона (пользователь)
- contrAA® делает это автоматически!!!!

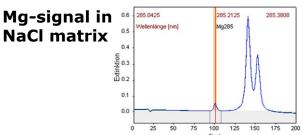
Задача: Коррекция неселективного поглощения в АА спектроскопии

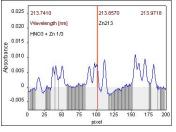
- Технические решения
 - Дейтеривая (D_2) коррекция фона
 - Неточности из-за дискретного учета фона 😕
 - Коррекция Смита Хифти (сильно-точная пульсация)
 - Неточности из-за коррекции, которая проводится не на самой аналитической линии
 - Коррекция фона по Зееману
 - Неточности в следствии наложений линий 😕
 - Коррекция фона используя корректирующих пикселей в ААС высокого разрешения с источником непрерывного спектра
 - Одновременная сильная коррекция фона нового поколения

Коррекция фона в HR CS AAS

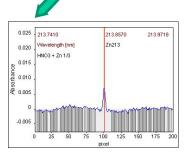
- HR CS AAS
 - Источник непрерывного излучения
 - Двойной монохроматор высокого разрешения
 - ПЗС (ССD) чип как детектор
- Детектор
 - ПЗС (CCD) матрица с 200 детекторами работающими независимо и одновременно
 - все пиксели одновременно облучаются
 - Все пиксели одновременно считываю
 - Все коррекции проводятся одновременно!

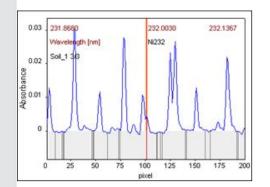


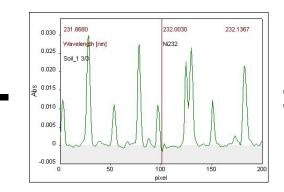

Коррекция фона в HR CS AAS


analytikjena

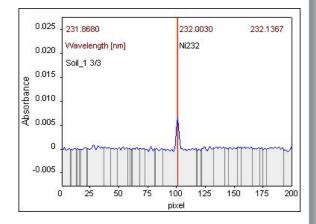
Тип интерференции	LS AAS	HR-CS AAS	
Дрейф интенсивности лампы	Двулучевая оптическая схема последовательная	Коррекционные пиксели одновременная	
Температурная эмиссия	Модуляция источника излучения последовательная	Коррекционные пиксели одновременная	
Сплошной фон Рассеивание света	Последовательная коррекция фона последовательная	Коррекционные пиксели одновременная	
Сплошной фон Молекулярный фон тонкой структуры	Коррекция фона по Зееману последовательная	Корректировочный спектр одновременная	
Перекрытие линий	Коррекция не возможна	Корректировочный спектр одновременная	


- contrAA® одно лучевой инструмент
- одновременно измеряет коррекционные пиксели (псевдо двулучевая конфигурация)
- автоматическая корректировка для:
 - ✓ дрейфа лампы
 - ✓ термического излучения
 - ✓ линейности света
- **референсный спектр** измеряется для корректировки:
 - ✓ наложений АА линий
 - ✓ молекулярной абсорбции (like PO, SiO₂ etc.)
 - ! средство идентификации линий (f orAA-lines and common molecular absorptions)
 - расширение библиотеки референсных

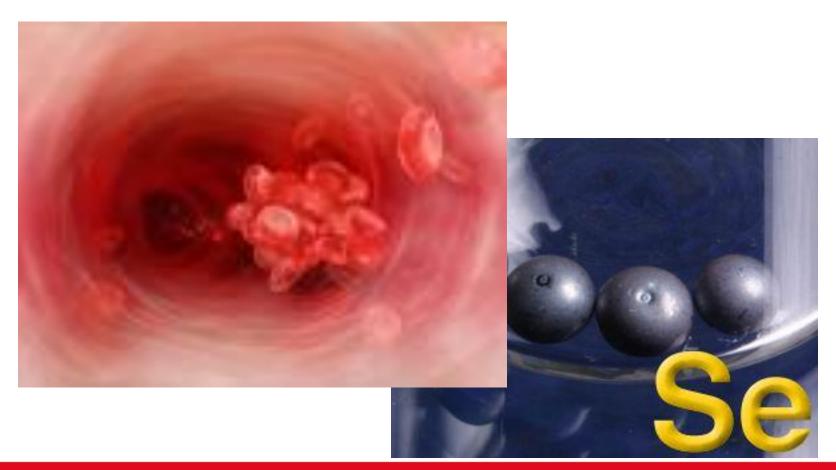




Коррекция фона при определении никеля в почвах и донных отложениях


Определение Ni на 232.0030 nm

Spectrum of a soil sample



Correction spectrum of SiO

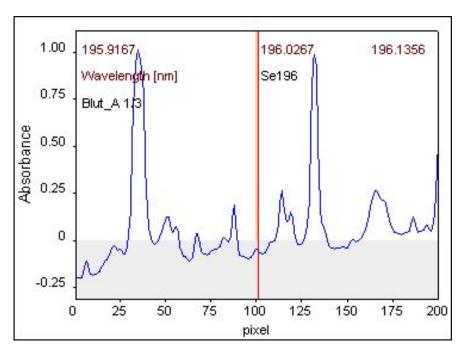
Определение Se в цельной крови

Проблемы:

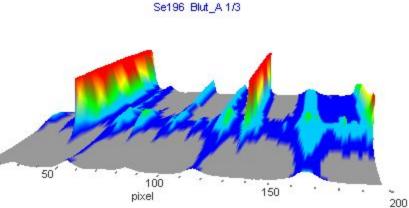
Спектральные наложения:

- Присутствие фосфатов в тонких структурах приводит к спектральным наложениям на резонансной линии Se
- Постоянное присутствие О структур также дает спектральные наложения на резонансную линию Se
- Присутствие Fe увеличивает поглощение в области Se из-за частичного перекрытия (Se 196.026 nm иFe 196.061 nm). Более двух близкорасположенных линий железа; Fe 195.950 nm и Fe 196.147 nm
- Использование Pd модификатора увеличивает поглощение в области Se из-за частичного спектрального наложения (Se 196.026 nm and Pd 196.012 nm)

Решение: ?

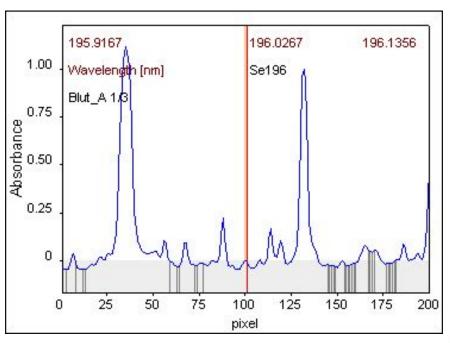

- ⇒ Использование второй чувствительной линии Se на 203.98 nm?
- чувствительность данной линии в 4 раза ниже первичной линии
- Она содержит больше наложений от поглощения молекулярных связей
- → использование альтернативной линии Se?
- Поскольку Se должен быть определяется в следовых количествах, нет возможности использовать другую линию

Решение:

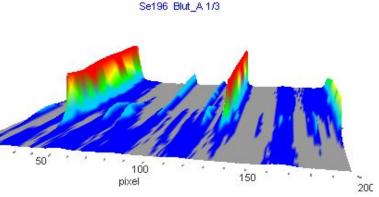

Одновременная коррекция фона с использованием полиномиального преобразования спектров методом наименьших квадратов.

Определение Se в цельной крови

Разработка и оптимизация методики



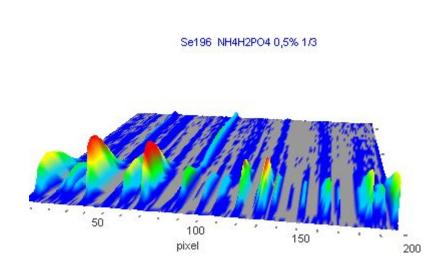
Изменение величины абсорбции во времени и по длинам волн до проведения коррекции


Определение Se в цельной крови

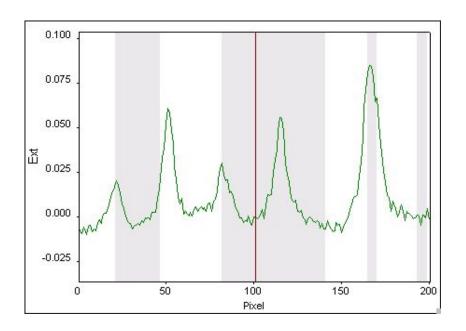
Разработка и оптимизация методики

Первичная коррекция идет

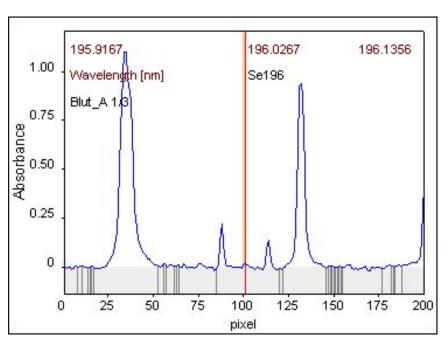

С помощью свободных от аналитических линий пикселей для учета в том числе флуктуаций источника излучения и помех широкополостного излучения

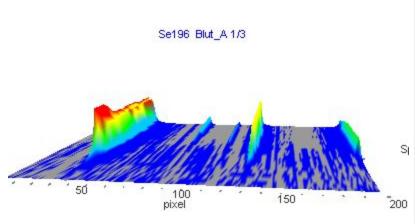


⇒ Динамическая коррекция фона


1. Записываем спектр молекулярных структур РО

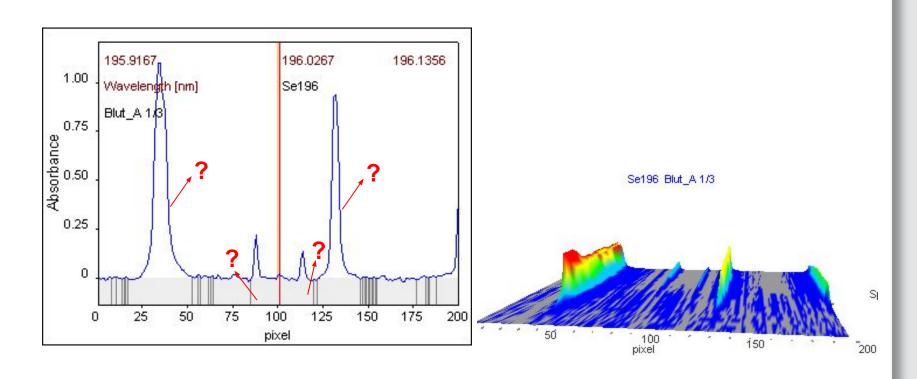
Снимаем спектр 0.5 % p-ра $NH_4H_2PO_4$ и сохраняем в качестве корректирующего спектра

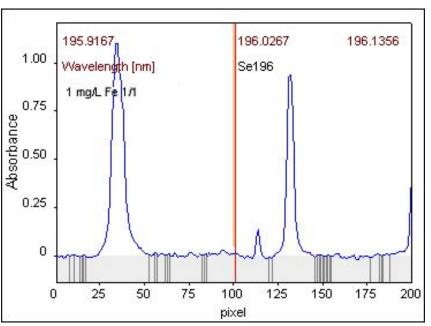

2. Запись спектра О-структур

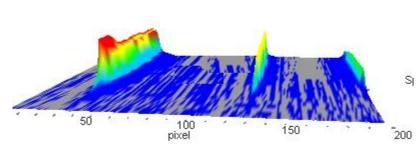


Распознавание линий О-структур в спектре.

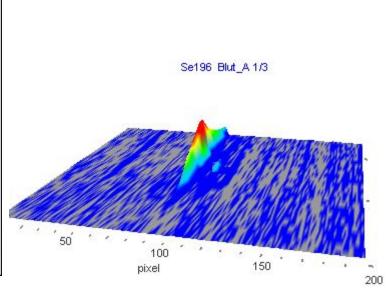
Запись опорного абсорбционного спектра О в режиме пиролиза.

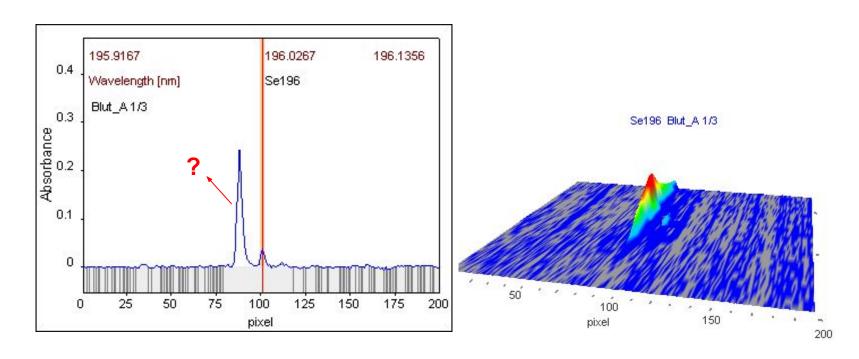

3. Спектр линий селена после удаления из него линий РО и Оструктур



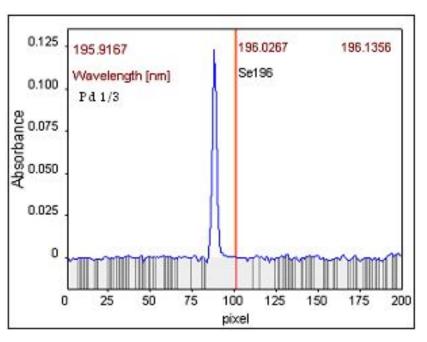

Определение Se в цельной крови

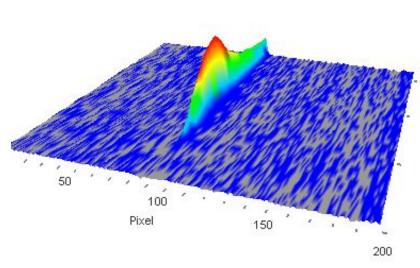
4. Что это за линии?


5. Распознавание по библиотеке линий в ПО мешающей линии Fe.Запись спектра линий Fe чтобы точно повторить контуры линии

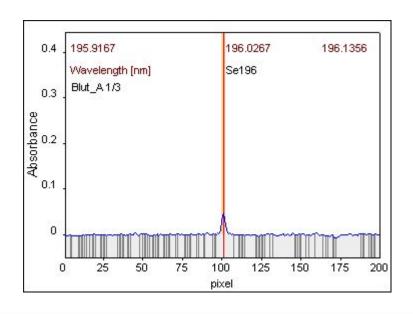


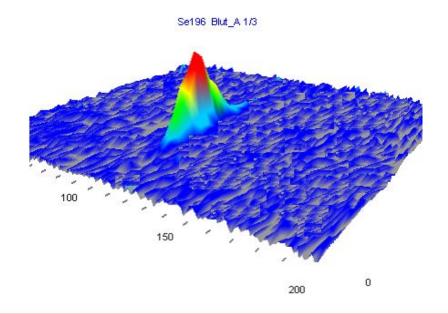
6. После вычитания из спектра линий Fe





7. Что представляет из себя эта линия?


8. Распознавание по библиотеке линий в ПО мешающей линии Fe.Запись спектра линий Fe чтобы точно повторить контуры линии



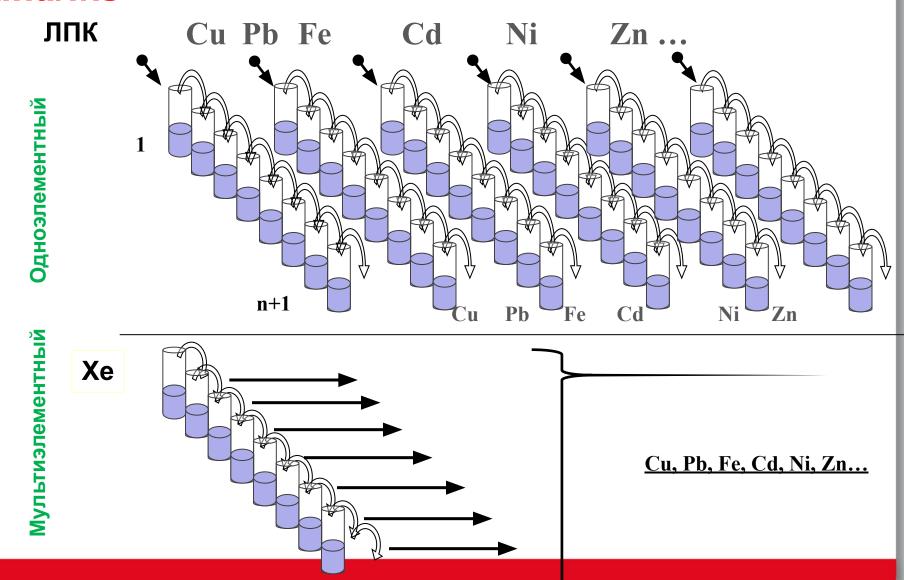
9. После проведения всех видов коррекции

Спектр селена в цельной крови оптимизируется поутем полиномиального преобразования методом наименьших квадратов и пользователь получает 2D и 3D спектр линий Se свободный от разного рода спектральных помех.

analytikjena

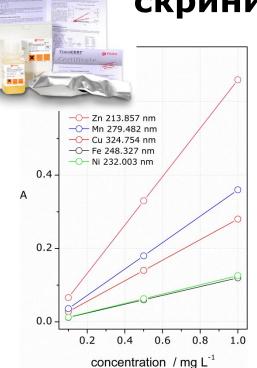
10. Сравнение результатов исследования аттестованных значений референсных образцов с полученными

Диапазон	доп.зн. [µg/L]	Аттест. знач-е, [мкг/л]	HR-CS AAS [мкг/л]
Recipe ClinCheck L1	118 – 178	148	128 ± 11
Recipe ClinCheck L2	137 – 205	171	183 ± 15
Recipe ClinCheck L3	158 – 236	197	218 ± 18
Образец крови А	_	_	135 ± 12
Образец крови В	_	_	152 ± 15


contrAA ®

- мультиэлементный скрининг
- определение неметаллов, определение производных фтора
- одновременный мульти элементный анализ

Последовательный мультиэлементный

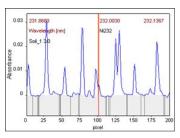

analytikjena

анализ

Мультиэлементый

СКРИНИН тtrAA® 300 + аксессуары для пламени

- Калибровка по 3 точкам для 5 элементов + измерение референсного раствора мультиэлементного стандарта за 6 минут
- создание библиотеки калибровок для каждого элемента
- инструменты для проведения рутинных измерений (пороговое обнаружение)
- сельское хозяйство, металлургия, горное дело и добыча руд, Контроль качества вод
- 5 элементов в 10 образцах за 30 минут
- достойно конкурирует с методом ИСП-ОЭС!


Экспресс-анализ

- образью рароформы с кремнистой матрицей (ВАМ-U110) и реальный образец
- микроволновое разложение в смеси HNO_3 , HF, HCl (EPA 3052)
- мультиэлементный анализ на contrAA® 300 + аксессуары для пламени
 - ✓ 7 элементов в одном образце
 - ✓ 4-точечная калибровка на кажд.Э
 - ✔ Валидационный цикл (изм. референса)
 - ✔ Выбор подходящего способа

коррекции фона

✔ Обработка результатов

content / mg kg-1	Cd	Cu	Pb	Mn	Ni	Fe	Zn
reference (certified)	7.3±0.6	263±12	197±14	621±20	101±5	2.8*	1000±50
reference (found)	7.21±0.25	251±3	185±5	602±6	94.7±0.6	2.67±0.1	947±5
soil sample	0.61±0.1	26.2±0.3	55.8±1.6	704±6	28.5±0.8	1.87±0.06	141±5

0.015

Аргументы в пользу приобретения contrAA® contrAA®

• ICP-OES

- Практически сразу готова к работе
- В спектре только линии абсорбции
- Быстрое переключение м/у образцами
- Высокая автоматизация обработки спектров (динамическая коррекция фона)
- Рациональные эксплуатационные расходы, в том числе на газ (не используется в большом кол-ве аргон)

- Х длительный период стабилизации плазмы
- х огромное количество атомных и ионных линий в спектре
- х время, затрачиваемое на промывку между образцами
- х чтение и обработка спектров требует высокой квалификации спектроскописта

Те же возможности у contrAA, что й при использовании ИСП-ОЭС, но за большие деньги!

Определение неметаллов

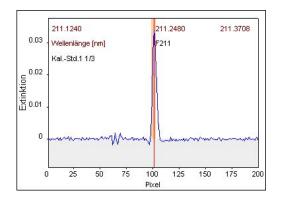
- Галогены, сера, фосфор на $contrAA^{\otimes}$?
- Чувствительные резонансные линии в области вакуумного УФ (≤ 190 нм)
- Стадия образования химического соед-я с элементом

✓ F □ GaF/AIF (Ga: 211.248 nm; AI: 227.470)

✓ CI □ AICI (AI: 227.470)

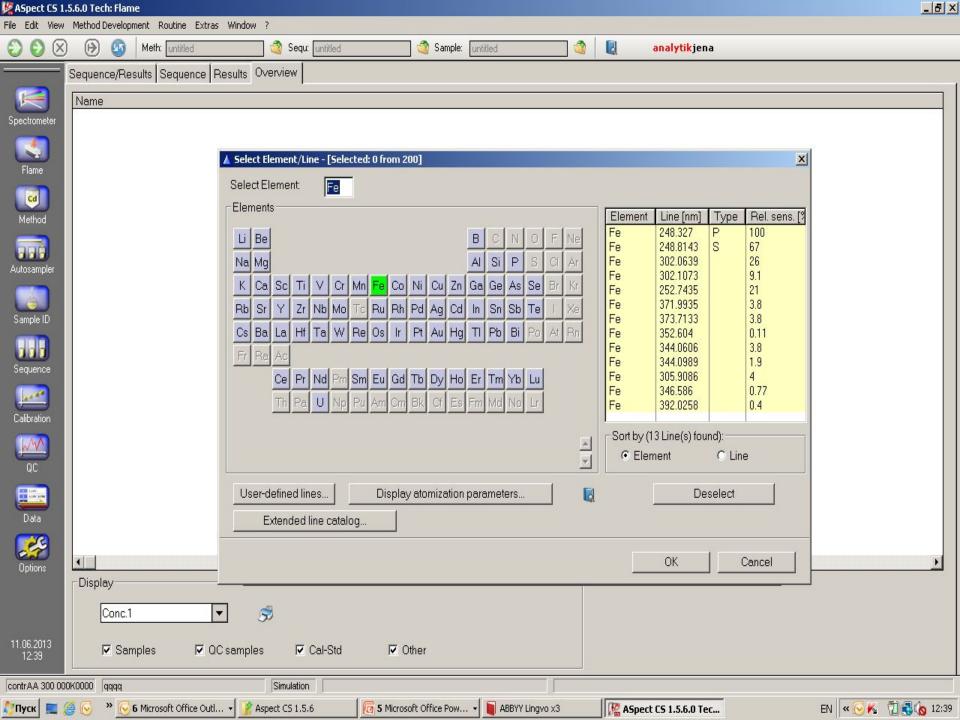
✓ S \Box CS (multiplet centred ~ 258 nm)

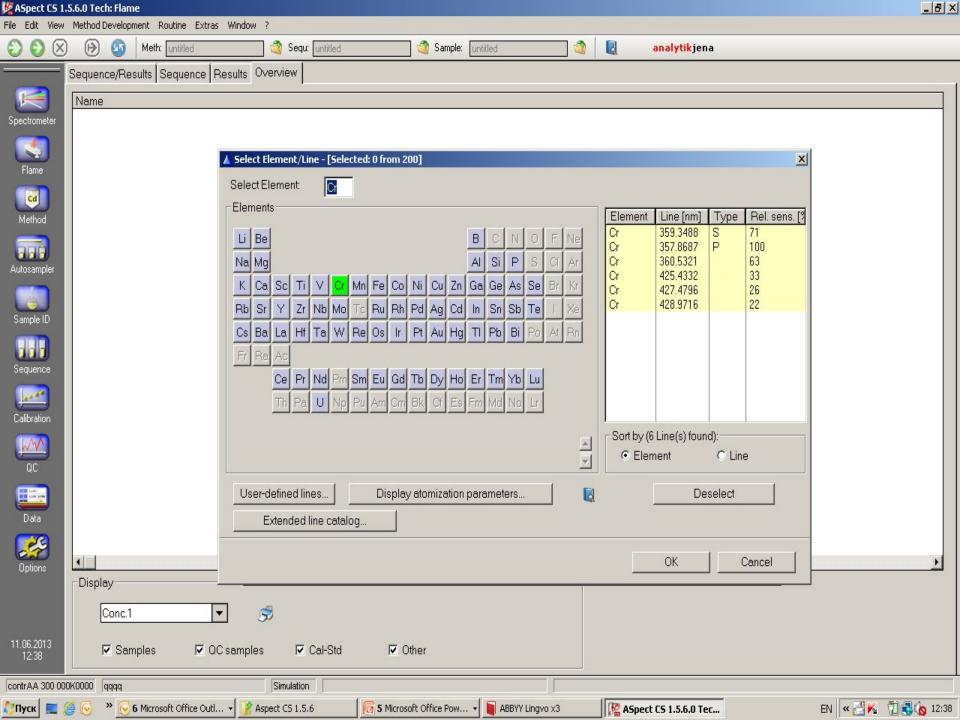
✓ P □ PO (multiplet between 200-350nm)



- сера в вине
- фосфор в тканях и жидкостях человека, биодизель
- фтор в питьевой воде, зубной пасте

Будущее за определение производных фтора спектральными


методами



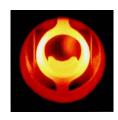
- contrAA® 600 графитовая печь
- Добавление модификатора $Ga(NO_3)_3$ (F \square **GaF**)
- Определение F по молекулярным абсорбционным линиям GaF (211.248 нм)
- Метод не требует наличие источника линий **F**
- Более эффективное решение такого типа задач, чем методом титрования с ион-селект.электродом
- Более правильное и единственно возможное определение $[F_{total}]$

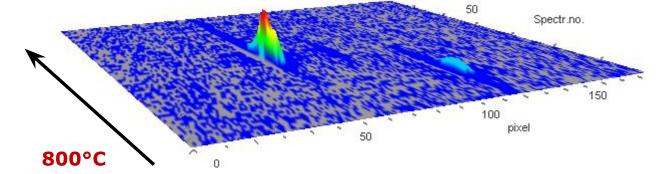
toothpaste	contains	[F _{total}] / ppm		
		contrAA	ISE	GC-MS
Colgate Total	NaF	1520 ± 28	1390 ± 209	1480 ± 20
Colgate Max	Na ₂ PO ₃ F	1530 ± 28	770 ± 116	1520 ± 30

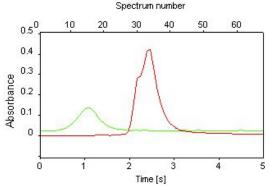
Насколько съедобны ваша рыба и чипсы?

- Стандартный образец рыбы (DORM2)
- Микроволновое разложение в смеси H_2O_2/HNO_3
- Калибровка по мультиэлементному стандарту Fe/Cd
- **Одновременное определение** Cd и Fe
- contrAA® 600 отлично справляется с

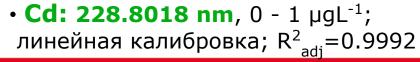
матричными влияниями

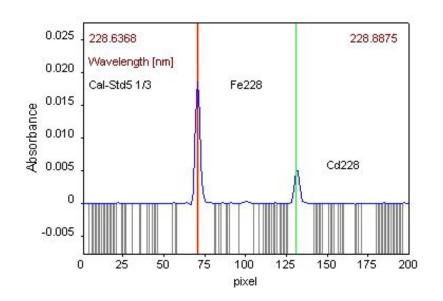

Калибровка по

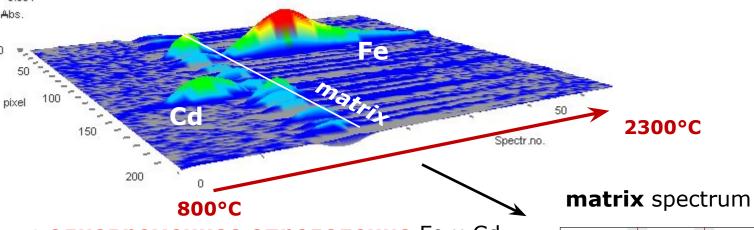

analytikjena

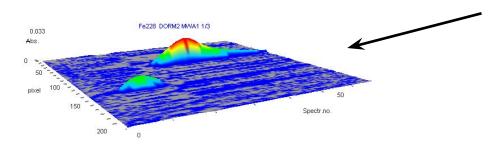

смешенному стандарту


Fe228 Cal-Std5 1/

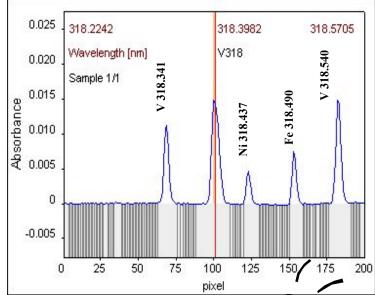








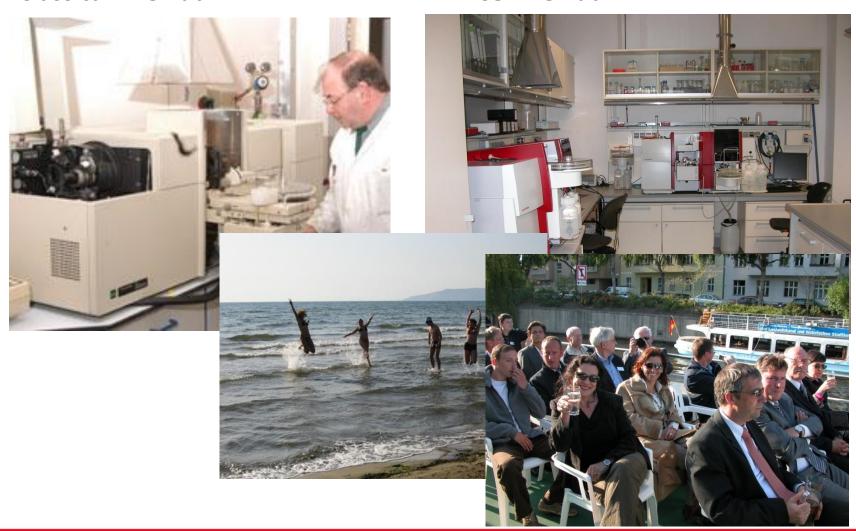
- одновременное определение Fe и Cd
- в два раза сокращается время на анализ
- визуализация спектра
- простая и эффективная коррекция фона
- интуитивно-понятный интерфейс ПО


0.010 S 0.005			1 11.	
₹ 0.005 0	MANA	WILL MAN		
-0.005	MWW	MMM	WMW	
-0.010	"		V	4 [
1	50	100 pixel	150	2

	mg kg ⁻¹	recovery rate
Fe	140.7	99%
Cd	0.0449	104%

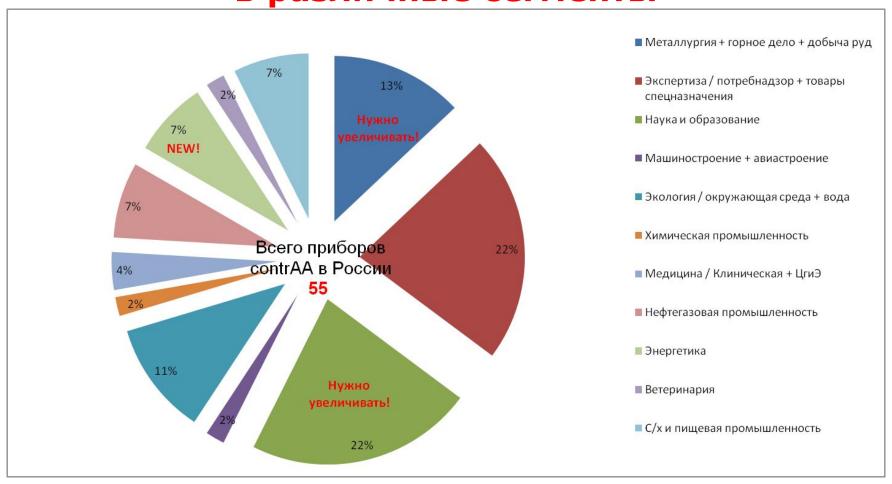
Одновременная AAS

- Элементы, которые содержат большое количество линий такие как Fe, Cr, Ni, Co, Mn могут анализироваться одновременно – Faster GF AAS!
- Например:
 - Fe, Mn (279.5 279.8 nm)
 - Fe, Ni, V (318.3 318.5 nm)
 - Fe, Ni (232.0 nm)
 - Cr, Fe (360.5 360.8 nm)
 - Co, Ni, Fe (352.4 352.7 nm)
 - Cd, Fe, Ni (228.7 228.8 nm)
 - Cr, Mn (357.8 nm)
- Внутренние стандарты подтверждают точность и правильность результатов!
- Многочисленные линии с разной чувствительностью расширяют рабочий диапазон!


Ni-Wavelength [nm]	LOD [pg]	Linear Range [pg]
234.554	11	2,000
234.751	160	20,000
234.663	210	50,000

Classical AAS Lab

HR-CS AAS Lab



Conclusion

- HR-CS AAS is one of the most robust analytical techniques for trace element determination available nowadays
- One light source for all elements
- All absorption lines of any element including non metals are available in the spectral range of 185 - 900 nm
- Simultaneous background and interference correction
- Improvement of the accuracy and detection limits
- More spectral information

Доля проданных инструментов contrAA® в различные сегменты

analytikjena

Thank you for your attention!