
SOLID
Fullstack Bootcamp 

2021 |hive-studio.net



Contents

Intro
01

02
Single Responsibility

03
Open/closed principle

04
Liskov Substitution

05
Interface Segregation

06
Dependency inversion



Intro



Intro



Intro

SOLID is an acronym for 5 important design principles when doing 
OOP (Object Oriented Programming).

These five software development principles are guidelines to 
follow when building software so that it is easier to scale and 
maintain. They were made popular by a software engineer, Robert 
C. Martin.

The intention of these principles is to make software designs more 
understandable, easier to maintain and easier to extend.



S – Single Responsibility



S – Single Responsibility

In programming, the Single Responsibility Principle states that 
every module or class should have responsibility over a single 
part of the functionality provided by the software.

A class should have a single responsibility.

If a Class has many responsibilities, it increases the possibility of 
bugs because making changes to one of its responsibilities, 
could affect the other ones without you knowing.



S – Single Responsibility



S – Single Responsibility



O - Open/closed principle



O - Open/closed principle

In programming, the open/closed principle states that software 
entities (classes, modules, functions, etc.) should be open for 
extensions, but closed for modification.

Classes should be open for extension, but closed for 
modification.

This principle aims to extend a Class’s behavior without 
changing the existing behavior of that Class. This is to avoid 
causing bugs wherever the Class is being used.



O - Open/closed principle



O - Open/closed principle



L - Liskov Substitution



L - Liskov Substitution

In programming, the Liskov substitution principle states that if S 
is a subtype of T, then objects of type T may be replaced (or 
substituted) with objects of type S.

More generally it states that objects in a program should be 
replaceable with instances of their subtypes without altering 
the correctness of that program.

The child Class should be able to process the same requests and 
deliver the same result as the parent Class or it could deliver a 
result that is of the same type.



L - Liskov Substitution



I - Interface Segregation



I - Interface Segregation

In programming, the interface segregation principle states 
that no client should be forced to depend on methods it 
does not use. Put more simply: Do not add additional 
functionality to an existing interface by adding new 
methods. Instead, create a new interface and let your class 
implement multiple interfaces if needed.

Clients should not be forced to depend on methods that 
they do not use.

This principle aims at splitting a set of actions into smaller 
sets so that a Class executes ONLY the set of actions it 
requires.



I - Interface Segregation



I - Interface Segregation



D - Dependency inversion



D - Dependency inversion

In programming, the dependency inversion principle is a 
way to decouple software modules.

This principle states that:

• High-level modules should not depend on low-level 
modules. Both should depend on abstractions.

• Abstractions should not depend on details. Details 
should depend on abstractions.

To comply with this principle, we need to use a design 
pattern known as a dependency inversion pattern, most 
often solved by using dependency injection.

Typically, dependency injection is used simply by ‘injecting’ 
any dependencies of a class through the class’ constructor 
as an input parameter.



D - Dependency inversion

High-level Module(or Class) - Class that executes an action with a tool.

Low-level Module (or Class) - The tool that is needed to execute the action

Abstraction - Represents an interface that connects the two Classes.

Details - How the tool works



D - Dependency inversion



Links

https://itnext.io/solid-principles-explanation-and-examples-715b975dcad4

https://medium.com/backticks-tildes/the-s-o-l-i-d-principles-in-pictures-b34ce2f1e898


