studio

[N\ A
TV L

SOLID

Fullstack Bootcamp

2021 | hive-studio.net

Contents

01
Intro

02
Single Responsibility

03
Open/closed principle

04
Liskov Substitution

05
Interface Segregation

06

Dependency inversion

studio
[NANYA

TV

Intro

studio
| AN

IV

—
Intro

The Software Design «halil stemmler
& Architecture Stack &te™eris

X DTOs, Domain-Models, Transaction Scripts,
Enterprise Patterns Repositories, Mappers, Value Objects

Architectural Patterns Model-View-Controller, Domain-Driven Design

X Layered, Client-Server, Monolithic,
Architectural Styles Component-based

e iteer ey Policy vs. details, Coupling & cohesion,
Jehibeciuna IENCIR S dependencies, boundaries

Design Patterns Observer, Strategy, Factory, etc

Desin. Principles Composition Over Inheritance, Hollywood Principle,
g P encapsulate what varies, SOLID, DRY, YAGNI
Object-Oriented Inheritance, Polymorphism, Encapsulation,
Programming Abstraction

Programming

N Structured, Object-Oriented, Functional
Paradigms

Name, construct, structure, style,

elizai (g2l readability

studio
| AN

TV

"Intro

Single responsibility principle

SOLID is an acronym for 5 important design principles when doing
OOP (Object Oriented Programming).

Open closed principle

These five software development principles are guidelines to
follow when building software so that it is easier to scale and
maintain. They were made popular by a software engineer, Robert Liskov substitution principle
C. Martin.

The intention of these principles is to make software designs more nterface segregation principle
understandable, easier to maintain and easier to extend.

D Dependency inversion principle

studio

L LIN /A
1TV L

S - Single Responsibility

Mo

'S - Single Responsibility

I am a chef, lama
In programming, the Single Responsibility Principle states that b @
every module or class should have responsibility over a single & driver
part of the functionality provided by the software.

A class should have a single responsibility.

If a Class has many responsibilities, it increases the possibility of

i
lam a
ainter

bugs because making changes to one of its responsibilities,
could affect the other ones without you knowing. =

Single Responsibility

studio

L LIN /A
1TV L

'S - Single Responsibility

class UserService {
private userModel;
private commentModel;

getUser() {
return this.userModel.findOne();

getComment() {
return this.commentModel.findOne();

async getUserComments(userId: string) {
const user = await this.userModel.findOne({ id: userId });
const comments = await this.commentModel.find({ id: { $in: user.comments } });

return comments;

studio
[AN

TV

'S - Single Responsibility

class UserService {
private userRepo: UserRepo;
private commentRepo: CommentRepo;

async getUser(userId: string) A
const user = await this.userRepo.getUser(userId);
const comments = await this.commentRepo.getComments(user.comments);

return {
...user,
comments

class CommentRepo {
private commentModel;

getComments(commentIds: string[]) {
return this.commentModel.find({ id: { $in: commentlIds } });

class UserRepo {
private userModel;

getUser(id: string) {

return this.userModel.findOne({ id });

studio
| LI\ A

TV

O - Open/closed principle

Mo

0 - Open/closed principle

In programming, the open/closed principle states that software
entities (classes, modules, functions, etc.) should be open for
extensions, but closed for modification.

Classes should be open for extension, but closed for
modification.

This principle aims to extend a Class’s behavior without
changing the existing behavior of that Class. This is to avoid
causing bugs wherever the Class is being used.

Open-Closed

studio

L LIN /A
1TV L

0 - Open/closed principle

interface BaseService { class Controller {
Hlints t (G4 constructor(
getone(id: string); public userService: BaseService,
modify(); public commentService: BaseService
delete();) {}

}

async getOne(id: string) {

LS Rl S const user = await this.userService.getOne(id);

constructor : : . 5
i (.) const comments = await this.commentService.list(user.comments);
public service: BaseService, NN NANNANANIN,
A return {
async getOne(id: string) { SR
const item = await this.service.getOne(id); comments
return item; }
} }
} }

studio
| LI\ A

TV

0 - Open/closed principle

interface BaseService { class UserController extends BaseController {
Tast@); constructor(
getOne(id: string); public userService: BaseService,
modify(); public commentService: BaseService
delete();) {
} super(userService)
}

class BaseController {
constructor(
public service: BaseService,

async getOne(id: string) A
const user = await this.service.getOne(id);
const comments = await this.commentService.list(ggggksgmmegxg);

)} .
return {
async getOne(id: string) A ...user,
const item = await this.service.getOne(id); comments
return item; }
} }
} }

studio
| LI\ A

TV

L - Liskov Substitution

Mo

T— Liskov Substitution

Hey Sam,
Can you make
me coffee?
’ Here'’s your i
coffee |

J 4
Al
Great! Thanks

In programming, the Liskov substitution principle states that if S
is a subtype of T, then objects of type T may be replaced (or
substituted) with objects of type S.

More generally it states that objects in a program should be

replaceable with instances of their subtypes without altering rp—— Hey Eden, Sam s
ey Eden, Sam is not here ri now.

the correctness of that program. nothereight o bl
an you make me coffee?
coffee?

| can’t make Q.Q ::;':l::osa
: Bl Foreseter
The child Class should be able to process the same requests and S ‘

deliver the same result as the parent Class or it could deliver a
result that is of the same type.

Liskov Substitution

studio
| AN

TV

L.

- Liskov Substitution

interface BaseService {

list();
getoOne(id: string);
modify();
gelete(n)s
}
class BaseController {
constructor(
public service: BaseService,
{3

async getOne(id: string) A
const item = await this.service.getOne(id);
return item;

class UserController extends BaseController {
constructor(
public userService: BaseService,
public commentService: BaseService

)

super(userService)

}

async getOne(id: string) A
const user = await this.service.getOne(id);

const comments = await this.commentService.list(user.comments);

return {
...user,
comments

studio
| LI\ A

TV

| - Interface Segregation

studio
| AN

I |-

I - Interface Segregation

In programming, the interface segregation principle states
that no client should be forced to depend on methods it ,
does not use. Put more simply: Do not add additional s | exeROiSES

Robots that can | Robots that can | Robots that can
spin around i rotate arms | wigge antennas

functionality to an existing interface by adding new s

methods. Instead, create a new interface and let your class | R T

implement multiple interfaces if needed. | e
. have antennas

Clients should not be forced to depend on methods that
they do not use.

This principle aims at splitting a set of actions into smaller
sets so that a Class executes ONLY the set of actions it
requires.

Interface Segregation

studio

I\ /A
1TV L

I - Interface Segregation

class Apple {
calories: number;
shape: string = 'circle’;
color: string ‘red’;

}

ctass User 4
eat(food: Apple): void {

}
roll(item: Apple): void {

}
}

studio
| AN

TV

I - Interface Segregation

enum Shapes {
‘circle’,

interface Rollable {
shape: Shapes.circle;

interface Eatable {
calories: number;

class Apple implements Rollable,

calories = 240;
shape = Shapes.circle;
colo = ‘red’;

class User {

}

eat(food: Eatable): void {
}
roll(item: Rollable): void {

} |

Eatable {

studio
| LI\ A

TV

D - Dependency inversion

studio
| AN

I |-

D - Dependency inversion

In programming, the dependency inversion principle is a
way to decouple software modules.

This principle states that:

* High-level modules should not depend on low-level
modules. Both should depend on abstractions. utpizza with or ool

given to me

* Abstractions should not depend on details. Details
should depend on abstractions.

To comply with this principle, we need to use a design
pattern known as a dependency inversion pattern, most
often solved by using dependency injection.

Dependency Inversion

Typically, dependency injection is used simply by ‘injecting’
any dependencies of a class through the class’ constructor
as an input parameter.

studio

L LIN /A
1TV L

D - Dependency inversion

High-level Module(or Class) - Class that executes an action with a tool.
Low-level Module (or Class) - The tool that is needed to execute the action
Abstraction - Represents an interface that connects the two Classes.

Details - How the tool works

studio
| AN

TV

D - Dependency inversion

interface BaseService { class UserController extends BaseController {
Tast@); constructor(
getOne(id: string); public userService: BaseService,
modify(); public commentService: BaseService
delete();) {
} super(userService)
}

class BaseController {
constructor(
public service: BaseService,

async getOne(id: string) A
const user = await this.service.getOne(id);
const comments = await this.commentService.list(ggggksgmmegxg);

)} .
return {
async getOne(id: string) A ...user,
const item = await this.service.getOne(id); comments
return item; }
} }
} }

studio
| LI\ A

TV

'En ks

studio

