II. Устная работа.

- Вычислите:

72; 6)
$$(3)$$
; B) 11^2 ; Γ (5) ; $(\frac{8}{9})^2$; e) $0,2^2$; m $(\frac{3}{7})^2$; m $($

является ли число π квадратным корнем из числа m, если:

a)
$$\pi = 5$$
, $m = 25$;

B)
$$\pi = 0.3$$
, $m = 0.9$;

б)
$$\pi = -7$$
, $m = 49$;

$$\Gamma$$
) π = 6, m = -36.

з а д ан и е: определить, является ли число *п* арифметическим квадратным корнем из числа *m*, если:

a)
$$\pi = 8$$
, $m = 64$;

B)
$$\pi = 0.2$$
, $m = 0.4$;

б)
$$\pi = -3$$
, $m = 9$;

$$\Gamma$$
) π = 0,4, m = 0,16.

4. Основное свойство арифметического квадратного корня. Вычислить значения следующих выражений:

$$(\sqrt{4})^2$$
, $(\sqrt{25})^2$, $(\sqrt{\frac{1}{81}})^2$

$$(e\sqrt{m})^2 = dQ$$
 $a \ge$

- 3. Историческая справка.
- Обратим внимание на совпадение в терминах квадратный корень и корень уравнения. Это совпадение не случайно. Уравнения вида $x_{\perp}^2 = a$ исторически были первыми сложными уравнениями, и их решения были названы корнями по метафоре, что из стороны квадрата, как из корня, вырастает сам квадрат. В дальнейшем термин «корень» стал употребляться и для произвольных уравнений.

Название «радикал» тоже связано с термином «корень»: по-латыни корень – <u>radix</u> (он же редис – корнеплод). Также слово «радикальный» в русском языке является синонимом слова «коренной». Происхождение же символа √ связывают с написанием латинской буквы <u>r</u>.

V. Итоги урока.

Вопросы учащимся:

- Что называется квадратным корнем из числа *a*?
- Сколько квадратных корней может быть из числа a?
- Что такое арифметический квадратный корень из числа a?
- Имеет ли смысл запись $\sqrt{-9}$? Почему?
- Всегда ли верно равенство $(\sqrt{a})^2 = a$?