Лабораторная работа №2 Матричные вычисления в Mathcad и Excel

ВЫПОЛНИЛА: СТУДЕНТ 1 КУРСА ГРУППЫ 154 ШАБОТИНА ОЛЬГА

Содержание работы №4

Лабораторная работа №4

- 1. Выполнить работу «Матричные вычисления в Excel».
- 2. Выполнить работу «Матрицы в Mathcad».
- Все примеры рисунка 1.8 из работы «Матрицы в Mathcad» выполнить в MS Excel.
- Дома сделать презентацию, где сравнить результаты примеров рисунка
 1.8, выполненные в Excel и Mathcad.

Исходные матрицы

$$A := \begin{pmatrix} 5 & -1 \\ -7 & 3 \\ 4 & 0 \end{pmatrix}$$

$$\mathbf{B} := \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 7 \end{pmatrix}$$

$$A := \begin{pmatrix} 5 & -1 \\ -7 & 3 \\ 4 & 0 \end{pmatrix} \qquad B := \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 7 \end{pmatrix} \qquad S := \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2.5 & 6 \\ 3 & 6 & 1 \end{pmatrix} \qquad T := \begin{pmatrix} 16 \\ 24 \\ 18 \end{pmatrix}$$

$$T := \begin{bmatrix} 24 \\ 18 \end{bmatrix}$$

Умножение матрицы на скаляр

Mathcad:

$$C := B \cdot 0.5$$

$$C = \begin{pmatrix} 0 & 1 & 1.5 \\ 0.5 & 0 & 3.5 \end{pmatrix}$$

3	C		D	
	5	-1		8
	-7	3		
	4	0		
	and the			
	0	1	1	,5
),5	0	3	,5

Перемножение матриц

Mathcad:

$$D := A \cdot B$$

$$D = \begin{pmatrix} -1 & 10 & 8 \\ 3 & -14 & 0 \\ 0 & 8 & 12 \end{pmatrix}$$

85	+ × ✓ fr {-MYMHOX(B1:C3;F1:H2				(2)}
	A	В	С	D	E
1	Α	5	-1		В
2		-7	3		
3		4	0		
4					
5	D=A*B	-1	10	8	
6		3	-14	0	
7	1	0	8	12	

Транспонирование матриц

Mathcad:

$$\mathbf{D}^{\mathrm{T}} = \begin{pmatrix} -1 & 3 & 0 \\ 10 & -14 & 8 \\ 8 & 0 & 12 \end{pmatrix}$$

C	D	E	F	G	Н	1
-1		В	0	2	3	
3			1	0	7	
0						
10	8		D^T	-1	3	0
-14	0			10	-14	8
8	12			8	0	12

Вычисление определителя

Mathcad:

$$|S| = -56$$

B10		× / f	=МОПРЕД(V1:M(5)
	A	В	С	D
1	A	5	-1	
2		-7	3	
3		4	0	
4				
5				
6				
7				
8			<u>u</u>	
9		21		
10	S	-56		
11				
12			-	

Вычисление обратной матрицы

Mathcad:

$$F := S^{-1}$$

$$F = \begin{pmatrix} 0.598 & -0.411 & 0.071 \\ -0.304 & 0.179 & 0.143 \\ 0.027 & 0.161 & -0.071 \end{pmatrix}$$

0	D	E	F	G	H
-1		В	0	2	3
3			1	0	7
0					
		F=S^-1	0,598	-0,411	0,071
			-0,304	0,179	0,143
			0,027	0,161	-0,071