Лекция №10

Тема: Типы булевых функций. Теорема о полноте (теорема Поста).

Содержание:

- 1. Типы булевых функций.
- 2. Функции равные «0».
- 3. Функции равные «1».
- 4. Функции самодвойственные.
- 5. Функции монотонные.
- 6. Линейные функции.
- 7. Теорема о полноте.
- 8. Свойства элементарных функций.
- 9. Теорема Поста.
- 10. Особенности полных систем.

Типы булевых функций.

В алгебре логики из множества $N=2^{2^n}$ булевых функций выделяется 5 типов функций:

- 1. T_0 функции равные «0»
- 2. $T_1 \phi$ ункции равные «1»
- 3. S самодвойственные функции.
- 4. М монотонные функции.
- 5. L линейные функции.

Функции равные «0»

 T_0 – класс всех булевых функций $f(x_1,x_2,...,x_n)$, сохраняющих константу 0, т.е. f(0,0,...,0)=0

Если $f \in T_0$, a f' - функция, равная функции f, то и $f' \in T_0$. Число функций класса T_0 $N = \frac{1}{2} \cdot 2^{2^n}$. Это функции $f_1, f_2, f_6, f_9, f_{10}, f_{11}, f_{13}, f_{16}$.

Функции равные «1»

 T_1 – класс функций $f(x_1, x_2, ..., x_n)$, сохраняющих константу 1, т.е.

$$f(1,1,...,1) = 1$$

Класс T_1 состоит из функций, двойственных функциям класса T_0 (класс T_0 двойственен T_1).

Класс T_1 содержит $N = \frac{1}{2} \cdot 2^{2^n}$ функции. Это восемь функций: $f_1, f_2, f_3, f_5, f_{11}, f_{13}, f_{15}$.

Самодвойственные функции

S – класс самодвойственных функций f из P таких, что f' = f.

Для самодвойственной функции имеет место тождество

$$\bar{f}(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}) = f(x_1, x_2, \dots, x_n),$$

т.е. на наборах $(a_1, a_2, ..., a_n)$ и $(\overline{a_1}, \overline{a_2}, ..., \overline{a_n})$, которые мы будем называть противоположными, самодвойственная функция принимает противоположные значения.

Монотонные функции

М – класс монотонных функций.

И пусть $a = (a_1, a_2, ..., a_n), \beta = (\beta_1, \beta_2, ..., \beta_n)$ – любые наборы.

Определение. Для двух наборов $\mathbf{a}=(\mathbf{a}_1,\mathbf{a}_2,...,\mathbf{a}_n)$ и $\beta=(\beta_1,\beta_2,...,\beta_n)$ выполняется отношение предшествования, если $\mathbf{a}_1 \leq \beta_1,\mathbf{a}_2 \leq \beta_2,...,\mathbf{a}_n \leq \beta_n$.

Например, a=(0,1,0,1) и $\beta=(1,1,0,1)$ находятся в отношении предшествования, т.е. значение набора не уменьшается. Наборы же (0,1) и (1,0) не находятся в отношении предшествования.

Определение. Функция $f(x_1, x_2, ..., x_n)$ называется монотонной, если для любых двух наборов а и β , находящихся в отношении предшествования (т.е. значение наборов не уменьшается), имеет место неравенство:

$$f(a) \le f(\beta)$$
.

 Φ ункция, равная монотонной, является также монотонной. Здесь M- множество монотонных функций.

Линейные функции

L – класс линейных функций.

Переключательная функция от двух переменных называется линейной, если она может быть представлена полиномом первой степени:

$$f(x_0, x_1) = k_0 \oplus k_1 x_0 \oplus k_2 x_1 = k_0 + k_1 x_0 + k_2 x_1, (k_0, k_1, k_2 = 0 \lor 1),$$

т.е. каноническим многочленом, не содержащим произведения переменных. Т.к. количество коэффициентов (n+1), то и число линейных многочленов $2^{(n+1)}$ (для двух переменных ($2^3 = 8$) имеется 8 линейных функций).

Свойства элементарных функций

Элементарные логические функции могут обладать или не обладать следующими свойствами:

- 1. свойством сохранения нуля $(k_0=0)$;
- 2. свойством сохранения единицы (k₁=1);
- 3. самодвойственностью (нечёткостью):

$$f(\overline{x_0},\overline{x_1})=\overline{f}(\overline{x_0},\overline{x_1})$$
 для функций двух переменных и $f(x_1,x_2,...,x_n)=\overline{f(\overline{x_1},\overline{x_2},...,\overline{x_n})}$ в общем случае.

монотонностью

$$f(x_0, x_1) \le f(x'_0, x'_1)$$
 при $x_0 \le x'_0$ и $x_1 \le x'_1$;

линейностью:

$$f(x_0,x_1)=k_0+k_1x_0+k_2x_1$$

$$f(x_1,...,x_n)=k_0+k_1x_1+k_2x_2+\cdots+k_nx_n$$
 где k_0,k_1,k_2 – двоичная константа (0 или 1).

Теорема о полноте

Теорема (О функциональной полноте). Для того, чтобы система функций $(f \in A)$ была полной, необходимо и достаточно, чтобы она целиком не содержалась ни в одном из пяти классов T_0, T_1, S, M, L :

$$f \not\subset T_0, f \not\subset T_1, f \not\subset S, f \not\subset M, f \not\subset L.$$

Теорема. Из всякой полной системы функций можно выделить под-систему содержащую не более 4-х функций.

Доказательство:

Действительно, какая-либо одна функция $f_i \notin T_0$, кроме того либо не самодвойственна, т.к. $f_i(0,0,...,0) = f_i(1,1,...,1)$, либо не сохраняет 1 и не монотонна, поэтому и будет полной система из 4-х функций.

Теорема Поста

Теорема. Система (набор) элементарных логических функций является (функционально) полной, если произвольную ПФ можно педставить в виде суперпозиции функций этой системы.

Чтобы система ПФ была полной, необходимо и достаточно, чтобы она содержала хотя бы одну функцию, не сохраняющую нуль, не сохраняющую единицу, не являющуюся линейной, не являющуюся монотонной, не являющуюся самодвойственной.

Особенности функционально полных систем.

Для удовлетворения критерию полноты необходимо и достаточно, чтобы среди функций системы имелись:

- 1. функция, не сохраняющая константу «0»;
- 2. функция, не сохраняющая константу «1»;
- 3. функция, не являющаяся самодвойственной;
- 4. функция, не являющаяся монотонно;
- 5. функция, не обладающая свойством линейности.

Если каждая из взятых функций не обладает лишь одним свойством, то для функциональной полноты необходима система из 5-ти функций.

Полная система называется несократимой, если исключение любой функции системы нарушает её полноту. В связи с тем, что каждая из функций не обладает несколькими свойствами, функционально полные системы могут быть построены с помощью одной, двух, трёх и четырёх функций. Наиболее распространённая система — система из трёх функций: И, ИЛИ, НЕ. С помощью этих функций могут быть описаны процессы управления любыми производствами, любая функция, описывающая работу любого устройства вычислительной техники.

Краткое основное содержание лекции

- 1. В алгебре логики существует 5 типов булевых функций.
- 2. Система (набор) элементарных логических функций является функционально полной, если любая функция алгебры логики может быть представлена в виде суперпозиции функций этого набора.