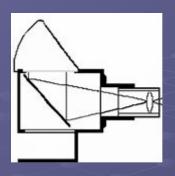
Фотограмметрическая обработка аэрокосмической информации

доцент кафедры Даргель Александр Витальевич

ГОСТ Р 51833-2001 Фотограмметрия. Термины и определения

фотограмметрия

Научная дисциплина и область техники, предметом которой является получение геометрической и семантической информации об объектах фотограмметрической съемки по их фотограмметрическим снимкам

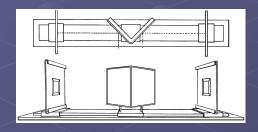

(фотограмметрический) снимок

Изображение объекта фотограмметрической съемки, зафиксированное на материальном носителе в аналоговом или цифровом виде, используемое для целей фотограмметрической обработки. Изображение, зафиксированное в аналоговом виде, называют аналоговым фотограмметрическим снимком; изображение, зафиксированное в цифровом виде, называют цифровым фотограмметрическим снимком

Области применения фотограмметрии

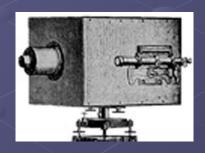
- создание топографических карт и ГИС;
- геологические изыскания;
- охрана окружающей среды (изучение ледников и снежного покрова, бонитировка почв и исследование процессов эрозии, наблюдения за изменениями растительного покрова, изучение морских течений);
- проектирование и строительство зданий и сооружений;
- археологические раскопки;
- киноиндустрия (совмещение игры живых актёров с компьютерной анимацией, например, в фильмах «Бойцовский клуб», «Аватар» и др.);
- автоматизированное построение пространственных моделей объекта по снимкам.

Основные события в истории фотограмметрии


камера-клара XVII в

стереоавтограф 1908 г. (использование до 70-х годов)

первый аналитический прибор 1956 г.


зеркальный стереоскоп 1838 г.

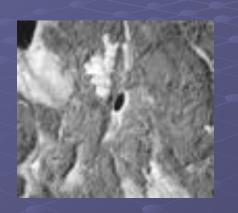
стереопроектор Романовского использование с 1956 г. до 00-х 21 века

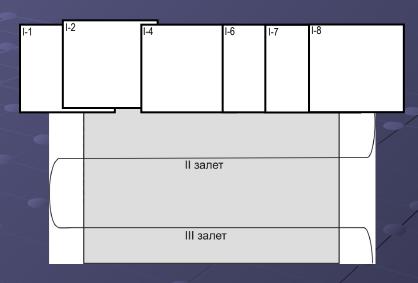
цифровые фотограмметрические станции 90-е гг 20 в. – 21 в.

фототеодолит 1859 г.

Аэро- и космическая фотосъемка

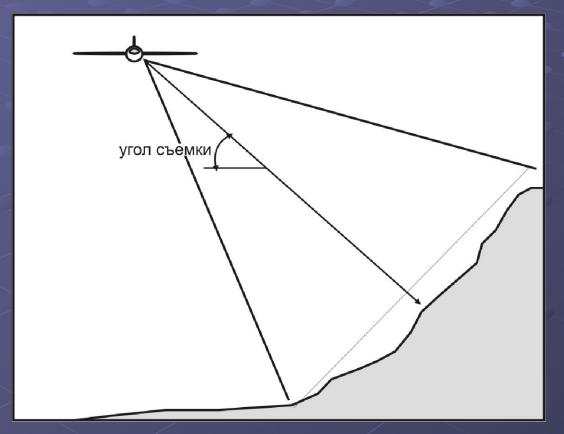
- Аэрофотосъемка комплекс работ для получения топографических планов, карт и ЦММ с использованием материалов фотографирования местности с летательных аппаратов или из космоса.
- Материалы аэросъемки являются основой для составления планшетов, планов, схематических карт и других графических документов, служащих для решения оперативных задач и для планирования долговременных мероприятий в лесном хозяйстве.
- Виды аэрофотосъемки
- (по конструктивным особенностям АФА)
- 1. Кадровая (серия отдельных кадров);
- Щелевая (щелевой снимок в виде сплошной «ленты» вдоль маршрута
- Панорамная (прямоугольные снимки с большим поперечным углом поля зрения)
- (по высоте полета летательного аппарата)
- 1. Космическая съемка земной поверхности (первые сотни км) выполняется с искусственных спутников Земли.
- 2. Аэрофотосъемка (АФС) выполняется с самолетов и вертолетов:
- **2а высотная** (5-10 км).
- **2б стандартная** (1-5 км).
- **2в низковысотная** (100-300 м)


(по использованию зон спектра)


- 1. Цветная снимки получают в естественных цветах местности;
- **2. Черно-белая** снимки получают в оттенках серого. Это позволяет снять излишнюю пестроту изображения территории, сохраняя **фотомом** интенсивность серого цвета и фактуры изображения.
- 3. Спектрозональная с помощью фильтров получают снимки определенных частей спектра и раскрашивают их в условные цвета. Технология позволяет совмещать и комбинировать изображения отдельных частей видимого спектра.
- 4. Радиолокационная получение изображения по отраженным от точке местности радиоволнам всепогодная съемка.
- 5. Инфракрасная (тепловая) с помощью тепловизоров.
- 6. Многозональная сразу несколькими синхронно работающими камерами.

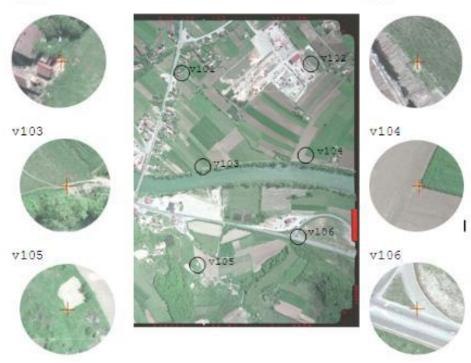
(по способу организации работ)

- 1. Маршрутная. Разновидность плановой съемки. Производится вдоль определенных направлений, долин рек, горных дорог и т.д.
- 2. Площадная (многомаршрутная) основной вид съемки при изысканиях площадных и линейных объектов.
- **3. Комбинированная.** Сочетание АФС с одним из видов наземной топографической съемки.

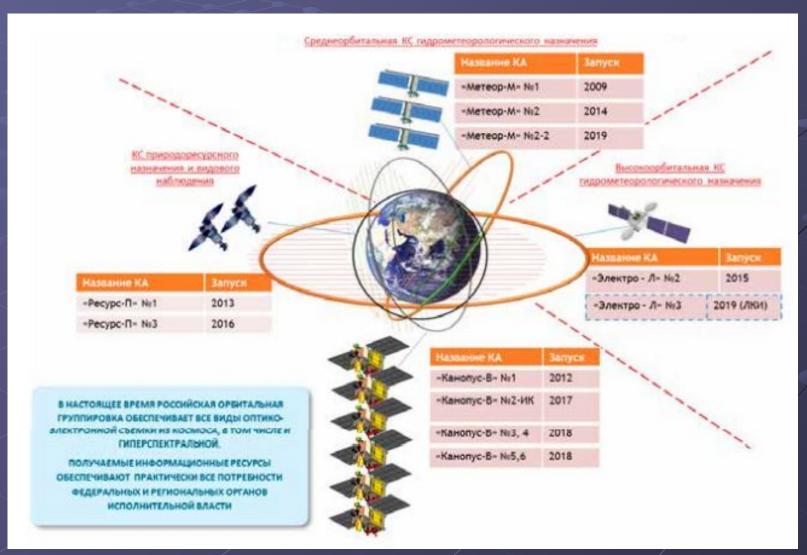

(по положению оптической оси <u>АФА)</u>

1. Плановая. Фотографирование производится в вертикальном направлении, сверху вниз, с отклонением от вертикали не более 3°. Этим видом съемки покрывают большие территории, пролетая над ней галсами (залетами). Обычно залеты имеют широтную ориентировку. Это наиболее часто используемый вид съемки.

2. Перспективная. Съемка производится под острым углом к горизонту. Используется обычно для съемки больших участков крутых склонов в условиях горной местности.



Планово-высотное обоснование аэросъемки


Плановое положение контурных точек определяют в камеральных условиях фототриангуляцией. На местности во время полевых наземных геодезических работ определяют координаты соответствующего числа точек местности, необходимого для создания триангуляции. Опорная точка — контурная точка аэроснимка, координаты которой определены на местности в результате привязки к пунктам ГГС. Плановые опознаки совмещают с четкими, легко опознаваемыми на аэроснимке контурами местности. Местоположение опознаков тщательно определяют и обозначают на снимке, составляют абрис с описанием местоположения.

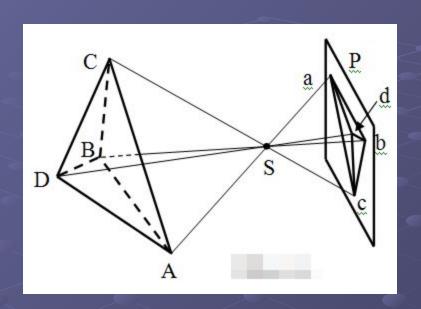
v101 v102

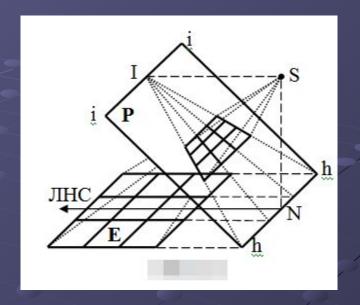


катал	лог опо	рных	точек
v101	4970650.488	6444325.082	129.885
v102	4970155.633	6444294.034	127.164
v103	4970624.541	6443957.396	129.786
v104	4970226.294	6443947.075	129.643
v105	4970703.935	6443585.227	133.846
v106	4970296.416	6443635.036	135.225

Отечественные космические системы Д33

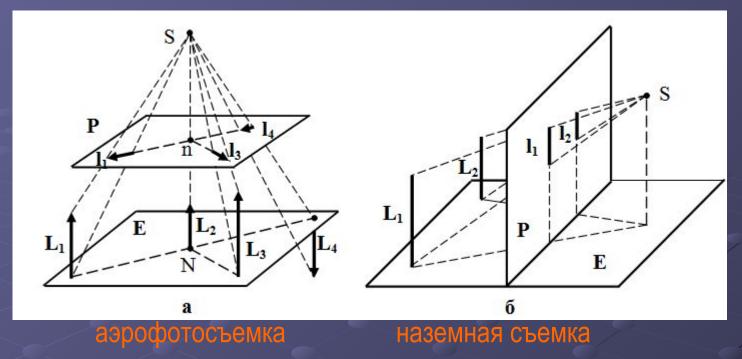
Режимы съемки КА Ресурс-П


Оптический диапазон


Виды съемок

Диапазон	Область	Зона	Длина волны в мкм	Вид съёмки
Радио-			свыше 1000	Радио- локационная
Оптический	Инфракрасная	дальняя	1000 - 7,00	Инфракрасная (тепловая)
		средняя	7,00 - 1,70	
		ближняя	1,70 - 0,77	(TCIIIIOBAA)
	Видимая	красная	0,77 - 0,62	Фотосъёмка
		оранжевая	0,62 - 0,59	
		жёлтая	0,59 - 0,56	
		зелёная	0,56 - 0,50	
		голубая	0,50 - 0,48	
		синяя	0,48 - 0,45	
		фиолетовая	0,45 - 0,39	
	Ультрафиолетовая	ближняя	0,39 - 0,30	Ультра- фиолетовая
		средняя	0,30 - 0,20	
		дальняя	0,20 - 0,01	
Рентгеновский			10-2 - 10-5	Рентгеновская

ПОЛОЖЕНИЯ ТЕОРИИ ПЕРСПЕКТИВЫ ПРИМЕНИТЕЛЬНО К ФОТОГРАММЕТРИИ



- 1. Проекцией точки объекта является точка
- 2. Проекцией прямой линии объекта является прямая линия
- 3. **Проекциями прямых линий**, лежащих на проектирующих лучах, которые проходят через центр проекции S, являются **точки**.
- 4. Взаимно параллельные прямые линии в зависимости от их ориентации в пространстве изображаются либо параллельными, либо сходящимися в одной точке.

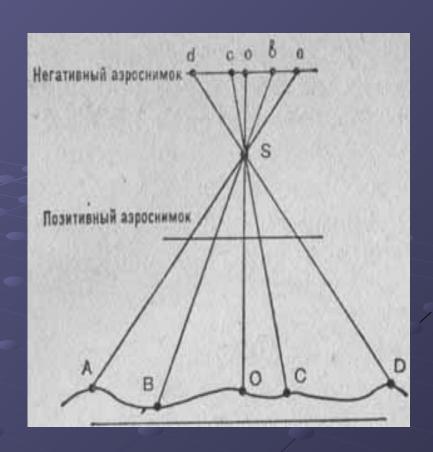
На плоскости Р линии сетки, параллельные линии направления съемки (ЛНС), будут изображаться сходящимися на линии горизонта ії в точке схода І, а линии сетки, перпендикулярные ЛНС, будут изображаться параллельными, но расстояния между ними будут сокращаться по мере приближения к линии горизонта ії.

Перспективы вертикальных линий на плоскость

В первом случае изображения вертикальных линий L1, L3, L4 будут лежать в плоскости Р на линиях I1, I3, I4, расходящихся из одной точки n, называемой точкой надира, которая согласно свойству 3 центральной проекции является проекцией вертикальной линии L2, совпадающей с проектирующей линией, проведённой из центра проекции S перпендикулярно к плоскости E.

Другой особенностью проекций вертикальных линий является то, что у изображений линий L1, L2 и L3, расположенных выше плоскости E, вершины будут лежать на направлениях от точки надира n, а у линии L4, расположенной ниже плоскости E, вершина будет лежать на направлении к точке надира n. Согласно этой особенности центральной проекции строения, деревья, горы, холмы и т.п. изображаются с опрокинутыми вершинами от центра снимка (точки надира). В то же время ямы, провалы изображаются со смещением нижних точек в сторону точки надира. Этот случай соответствует аэрофотосъёмке.

Во втором случае (рис. 2.4-б), когда плоскость Р перпендикулярна к плоскости Е, вертикальные линии L1 и L2 будут изображаться на плоскости Р параллельными линиями I1 и I2 как относительно друг друга, так и относительно линий L1 и L2. Этот случай соответствует наземной фотосъёмке.

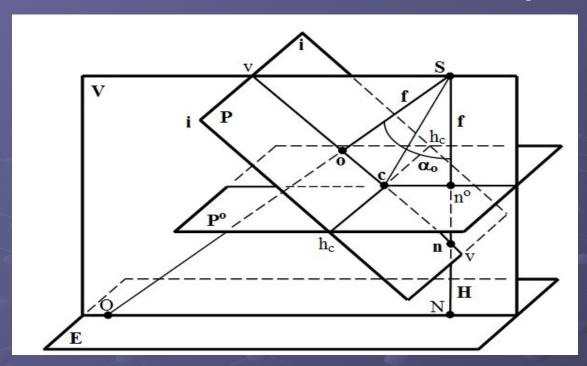

АЭРОФОТОСНИМОК

Аэрофотоснимок – это центральная проекция участка местности, которая образуется связкой проектирующих лучей.

Точка пересечения оптической оси аэрофотоаппарата с плоскостью светочувствительного слоя (O) называется

главной точкой и принимается за начало прямоугольной системы координат снимка.

S - центр проекции (задняя узловая точка аэрофотоаппарата); Aa, Be, Oo, Cc. Dd - световые лучи;



о - главная точка снимка; So = t - фокусное расстояние объектива АФА; SO - высота фотографиро вания; о, в. о, с, d - изображение на светочувствительном слое. Проекция, в которой изображение предметов на плоскости получается с помощью проектирующих лучей, пересекающихся в одной точке,

называется центральной, а точка пересечения этих лучей – центром проекции.

Основные элементы центральной проекции

- Р **плоскость наклонного снимка** картинная плоскость;
- E горизонтальная (предметная) плоскость;
- Р₀ плоскость горизонтального снимка, параллельная плоскости Е; V главная вертикальная плоскость, проведённая через главный оптический луч SO и отвесную линию SN;
- S **центр проекции**, в котором сходятся оптические проектирующие лучи. Из него получены наклонный Р и горизонтальный P_0 снимки.

о - **главная точка наклонного снимка** - точка пересечения главным оптическим лучом SoO плоскости P;

So = f - фокусное расстояние наклонного снимка;

SN = H - отвесная линия - перпендикуляр к горизонтальной плоскости E, вдоль неё измеряется высота фотографирования H;

- ії линия горизонта, её видно только на перспективных снимках;
- α- **угол наклона** снимка P, определяет отклонение главного оптического луча SO от отвесной линии SN, лежит в вертикальной плоскости V, проведённой через **отвесную линию** SN и **главный оптический луч** SoO;
- hchc **линия неискажённых масштабов** линия пересечения **наклонного** Р и **горизонтального** Ро снимков;
- с точка нулевых искажений точка пересечения главной вертикали vv и линии неискажённых масштабов hchc. Расстояние этой точки от главной точки как на наклонном, так и на горизонтальном снимках ос = -noc = -f tg0,5αo;
- n точка надира на наклонном снимке точка пересечения этого снимка отвесной линией SN. В точке надира сходятся изображения линий, перпендикулярных к плоскости E (например, изображения деревьев, линии углов зданий. Расстояние этой точки от главной точки on = -f tgao;