

Лекция: Реакционная способность углеводородов. Реакции Sr, Ae, Se

Биоорганическая химия для специальности 31.05.01 Лечебное дело ИФОИТМ Доцент Янькова В.И.

Основные вопросы лекции:

- 1. Предмет изучения биоорганической химии
- 2. Классификация органических реакций.
- 2. Реакции SR алканов, циклоалканов. Механизм, биологическая роль в метаболических процессах.
- 3. Реакция АЕ алкенов, алкадиенов. Механизм, значение.
- 4. Реакции SE аренов, гетероциклов. Механизм, биологическая роль.

Биоорганическая химия изучает строение и свойства веществ, участвующих в процессах жизнедеятельности, в непосредственной связи с познанием их биологической функции.

Субстрат — вещество, в котором происходит разрыв старых и образование новых связей с участием атома углерода.

Реагент — вещество, под действием которого происходят изменения в субстрате.

$$CH_3Br + NaOH \longrightarrow CH_3OH + NaBr$$
 Субстрат Реагент продукты реакции

Механизм реакции — детальное описание процесса в результате которого исходные вещества (субстрат и реагент) превращаются в продукты реакции.

Классификация реакций

По направлению и конечному результату:

Реакции присоединения – А;

Реакции замещения - S;

Реакции отщепления – Е (элиминирования);

Реакции перегруппировки

Реакции окисления и восстановления

Классификация реакций

По характеру изменения связей в субстратах и реагентах:

•реакции радикальные (гомолитический тип разрыва связей)

 $X : Y \square X^{\cdot} + Y^{\cdot}$ (образуются радикалы (R·): X^{\cdot} и Y^{\cdot})

•реакции ионные (гетеролитический тип разрыва связей)

 $E: N \square E^+ + :N^-$ (образуются электрофилы E^+ и нуклеофилы : N^-

Классификация реакций

Ионные реакции в зависимости от природы реагента:

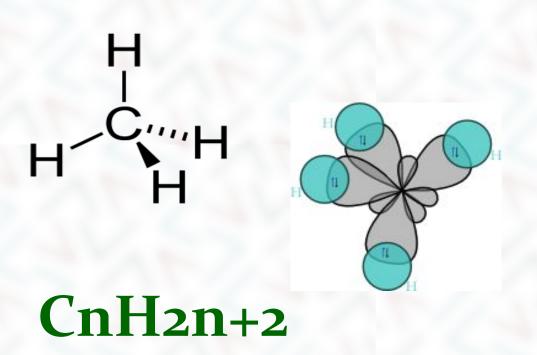
- электрофильные
- нуклеофильные

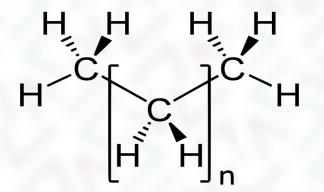
Основные понятия

РАДИКАЛЫ(R·) – свободные атомы или частицы с неспаренным электроном ('CH₃, Cl', Br').

ЭЛЕКТРОФИЛЫ (E) – частицы или фрагменты молекул, содержащие свободную орбиталь и имеющие недостаток электронной плотности (H⁺, Br ⁺, Cl ⁺).

НУКЛЕОФИЛЫ (N) – частицы или фрагменты молекул, содержащие подвижную электронную пару на внешнем электронном уровне (Br , Cl , OH , :NH , H $_{_2}$ O:).




Основные понятия

R·	\mathbf{E}^{+}	N ⁻
·Br	$^{\delta+}SO_{_{_{2}}}$ $^{\delta+}NO_{_{_{2}}}$ H^{+}	$H_{2}O^{\delta-}$ $NH_{3}^{\delta-}$ $R_{2}S^{\delta-}$ H^{-}
·NO₂	$^{\delta+}NO_{_{2}}$	$NH_{3}^{-\delta-}$
·NO ₂ ·Cl	H ⁺	$R_{2}S^{\delta-}$
·CH ₃	\mathbf{Br}^{+}	H-
·CH ₃ ·C ₂ H ₅	Br ⁺ H ₃ C ⁺	Br ⁻
		Br ⁻ HO ⁻ HS ⁻
		HS ⁻
A_R, S_R	A _E , S _E	A _N , S _N

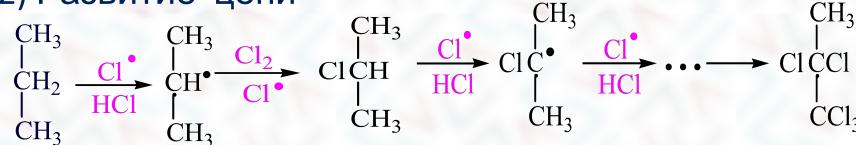
Алканы

Реакции радикального замещения (S_R) – ...

... реакции замещения, в которых атаку осуществляют *свободные радикалы* — частицы, содержащие один или несколько **неспаренных** электронов.

Стадии процесса:

- инициирование цепи;
- развитие цепи;
- обрыв цепи.



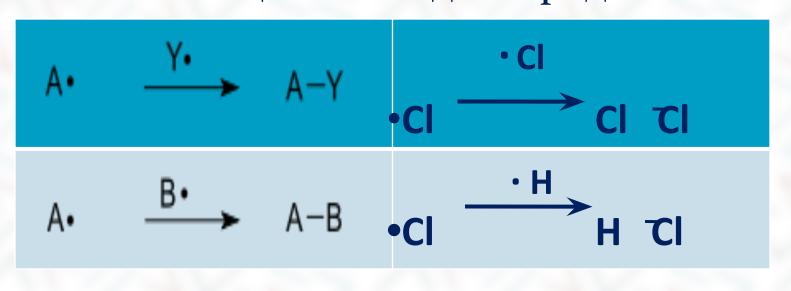
Пример S_R реакции

1)Инициирование реакции

C|-C| → C|· + · C|

2) Развитие цепи

$$\begin{array}{c}
Cl^{\bullet} \\
\hline
HCl
\end{array}$$


$$\begin{array}{c}
CH_{3} \\
\hline
Cl CCl \\
CCl_{3}
\end{array}$$

3) Обрыв цепи

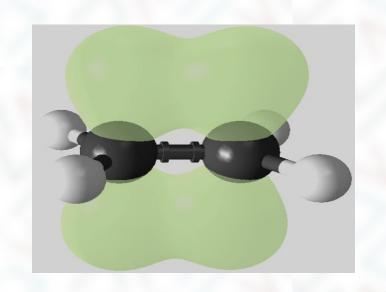
Рекомбинация свободных радикалов:

Региоселективность реакций SR

Реакция галогенирования (Br₂, Cl₂) протекающая по механизму радикального замещения (S_R), характеризуется региоселективностью, т.е. избирательностью к месту замещения.

При этом в первую очередь замещается атом водорода у третичного, затем у вторичного и первичного атомов углерода, что обусловлено меньшей энергией связи С-Н у третичного атома углерода и большей стабильностью третичного радикала.

* Биологическая роль S_R


- *Поражение кроветворных систем, кожных покровов, желез внутренней секреции, иммунной системы, мутации.
- * Злокачественные новообразования в организме.
- * Изучение структур ферментов, мембран, липидов.
- * Синтез лекарств: противоопухолевые, антибиотики.

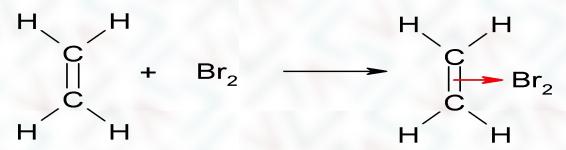
Алкены

CnH₂n

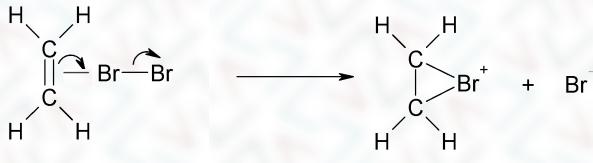
Механизм реакций Ав

$$H_2C=CH_2 + Br_2 \longrightarrow H_2C-CH_2$$
Br Br

Реакция идет по механизму электрофильного присоединения (А_г)


Реакции электрофильного присоединения (А_Е)

... реакции, в которых атаку на начальной стадии осуществляет электрофил частица, заряженная положительно или имеющая дефицит электронов. На конечной стадии образующийся карбкатион подвергается нуклеофильной атаке. Чаще атакующей электрофильной частицей является \mathbf{H}^{+} .



Механизм реакций Ав

1. Образование π-комплекса

2. Образование циклического галогенониевого иона

Механизм реакций Ав

3. Атака галогенониевого иона галогенид-ионом

Атака галогенид -ионом происходит со стороны, противоположной по отношению атому галогена в галогенониевом ионе (в транс-положение), образуется продукт транс-присоединения.

Гидрогалогенирование (присоединение галогеноводородов)

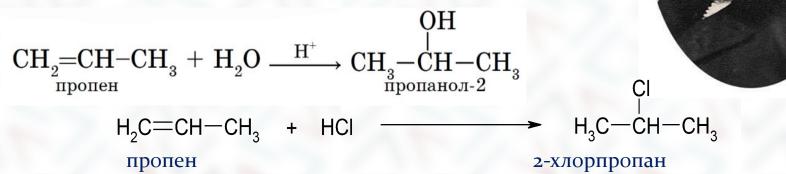
$$CH_2 = CH_2 + HCI \longrightarrow CH_3 - CH_2 - CI$$
этен хлорэтан

 CI
 $H_2C = CH - CH_3 + HCI \longrightarrow H_3C - CH - CH_3$
пропен 2-хлорпропан

Реакции идут по механизму электрофильного присоединения $(A_{\rm F})$

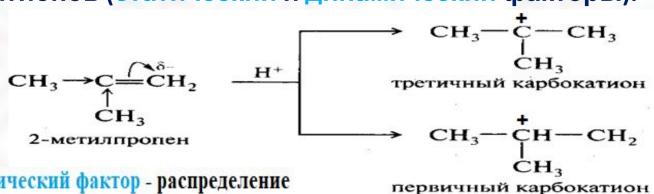
Механизм реакций Ав

$$CH_2 = CH_2 + H^+Cl^- \longrightarrow CH_2 + CH_2 \longrightarrow CH_3 - CH_2^+ \longrightarrow CH_3 - CH_2 - CH_3$$
 о-комплекс хлорэтан π -комплекс (карбокатион)


Электрофил H^+ , образующийся при гетеролитическом разрыве связи в молекуле HCl, атакует π -связь, образуя неустойчивый π -комплекс (быстрая стадия), который превращается в карбкатион (б-комплекс). Это медленная стадия, определяющая скорость процесса в целом.

Нуклеофильная атака хлорид-анионом Cl⁻ образовавшегося карбкатиона приводит к конечному продукту (быстрая стадия).

Правило В.В. Марковникова


При присоединении веществ типа НХ (НСІ, НВг, НОН) к нессиметричным алкенам, водород присоединяется к более гидрогенизированному атому углерода при двойной связи (содержащему большее число атомов водорода)

Правило В.В. Марковникова

Правило Марковникова объясняют различием в стабильности двух альтернативных карбокатионов, т.е. направление присоединения реагентов типа НХ определяется относительной устойчивостью промежуточно образующихся карбкатионов (статический и динамический факторы).

Статический фактор - распределение электронной плотности в молекуле до реакции.

третичный вторичный первичный

$$\stackrel{R}{\Rightarrow} \stackrel{+}{\leftarrow} R > \stackrel{R}{\Rightarrow} \stackrel{+}{\leftarrow} H > \stackrel{R}{\Rightarrow} \stackrel{+}{\leftarrow} H$$

Стабильность карбокатионов уменьшается

Относительная устойчивость карбкатионов определяется возможностью частичной делокализации положительного заряда в каждом из них (динамический фактор).

Алкильные группы (СН₃) за счет своего положительного индуктивного эффекта (+I-эффекта, электронодонорные группы) обладают способностью понижать положительный заряд у соседнего атома углерода - увеличивают стабильность.

Таким образом, образование третичных карбкатионов более выгодный процесс, чем первичных.

Гидратация (присоединение воды)

Реакция идет по механизму электрофильного присоединения (A_E) в соответствии с правилом Марковникова.

$$H_{2}C=CH_{2}$$
 + $H_{2}O$ $\xrightarrow{H'}$ $H_{2}C-CH_{3}$ OH этанол (этиловый спирт)

1

Механизм реакции гидратации алкенов (А,)

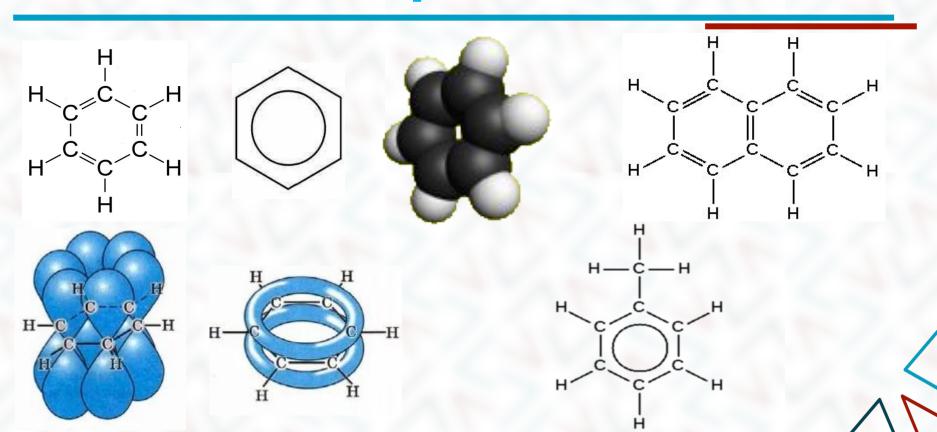
Электрофил H⁺, возникающий

при гетеролитическом

 $H_2C = CH - CH_2 - CH_3 \xrightarrow{H^+} H_2C \xrightarrow{\downarrow} CH - CH_2 - CH_3 \longrightarrow$ разрыве связи в молекуле H_2SO_4 (катализатор), атакует π - $H_3C - HC^+ - CH_2 - CH_3 \xrightarrow{HOH} H_3C - HC - CH_2 - CH_3 \xrightarrow{\bullet} H^{\bullet}$ $H_3C - HC - CH_2 - CH_3 + H^{\dagger}$ $H_3C - HC - CH_3 - H^{\dagger}$ $H_3C - HC - H^{\dagger}$ $H_3C - HC - H^{\dagger}$ $H_3C - H^{\dagger}$ связь, образуя неустойчивый π -комплекс, который превраща-ется в карбкатион (о-комплекс). Нуклеофильная атака молекулой воды карбкатиона приводит к образованию оксониевого иона (положительный заряд на атоме кислорода), при отщеплении от которого иона водорода образуется конечный продукт

* Биороль реакций **A**_E

- *Расщепление жиров в организме, ЖК, углеводов.
- *Процессы окисления в клетках ЖК липидов.
- *Биосинтез БАВ: терпены, стероиды, гормоны.
- *Процессы превращения в цикле Кребса (основной катаболический путь) непредельных ЖК в гидроксикислоты.


Присоединение воды к двойной связи протекает в организме и катализируется ферментами, например в цикле Кребса:

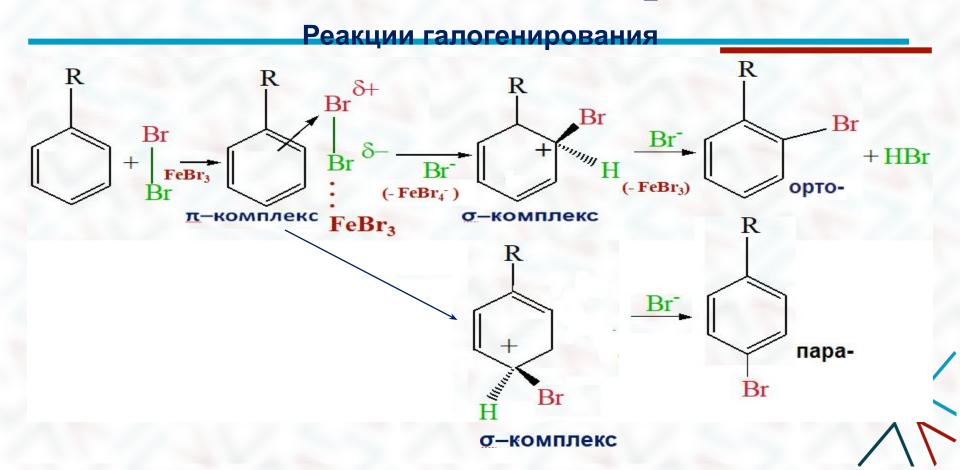
Нижник Я.П. http://norgchem.professorjournal.ru

Арены

Реакции электрофильного замещения (S_F)

Основной тип реакции для аренов — \mathbf{S}_{E} (sp² - гибридизованные атомы углерода), *реагенты* галогены Hal_{2} (Cl₂ , Br₂), $H_{2}SO_{4}$, HNO_{3} , $CH_{3}CI$, $CH_{3}COCI$.

т-электронное облако, расположенное нади под- плоскостью ароматического цикла восприимчиво к атаке электрофилами.


Реакции электрофильного замещения (S_E)

Атакующая частица — электрофил (положительно заряженная частица или частица с дефицитом **ē**). Уходящая частица — электрофуг. Процесс протекает в 4 стадии:

- 1. Генерирование электрофильной частицы.
- **2.** Образование *п*-комплекса (быстрая стадия).
- 3. Образование **σ-комплекса** (медленная стадия).
- 4. Образование конечного ароматического продукта реакции.

Пример реакции S_E

Пример реакции S_E

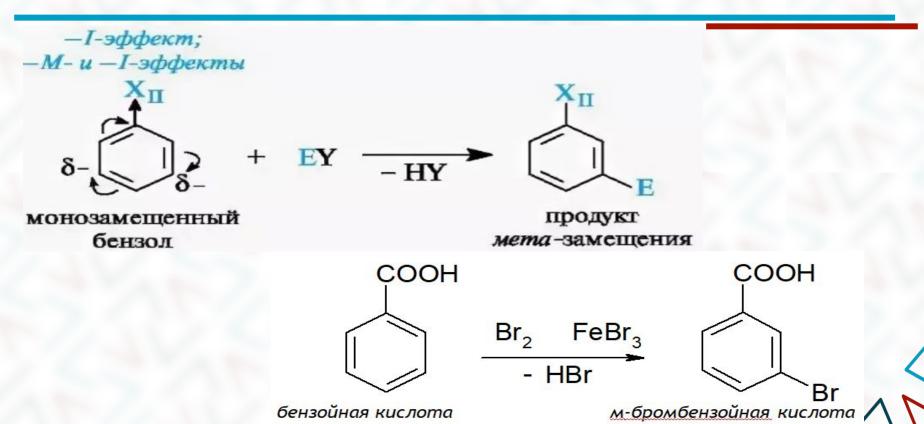
Реакция нитрования

$$H-\ddot{o}-NO_{2} + HOSO_{3}H \iff H-\dot{o}-NO_{2} + HSO_{4}^{-}$$
 $H-\dot{o}-NO_{2} + HOSO_{3}H \iff NO_{2}^{+} + H_{3}O^{+} + HSO_{4}^{-}$
 $\downarrow H$
 $\downarrow H$

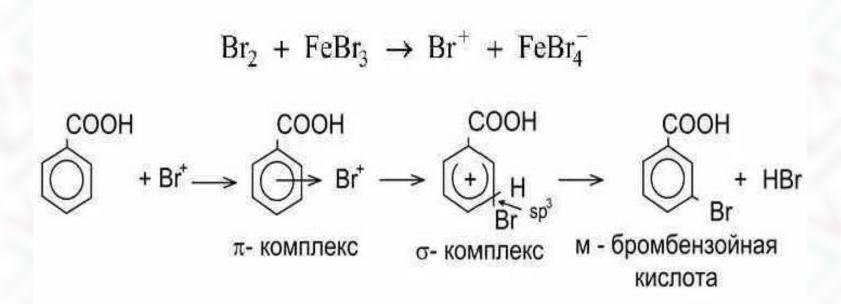
Ориентирующее действие заместителя

По ориентирующему и активирующему/дезактивирующему действию заместители можно разделить на **3 группы**:


- 1. Ориентанты первого рода: направляют электрофильное замещение в орто- и пара-положения и активируют реакцию она протекает легче, чем с незамещённым бензолом. (алкильные группы, OH, NH₂, CH₃O)
- **2. Ориентанты второго** рода: направляют электрофильное замещение в мета-положения и дезактивируют реакцию она протекает труднее, чем с незамещённым бензолом. (COOH, CHO, CONH₂, SO₃H, NO₂)
- 3. **Галогены**. Направляют электрофильное замещение в орто- и параположения и дезактивируют реакцию (F, Cl, Br, I).


Механизм реакции S_E

(заместители І рода)


Пример реакции S_E

Механизм реакции S_E

(заместители II рода)

*Биологическая роль S_E

- * Биосинтез ароматических гормонов и аминокислот.
- * Синтезы лекарственных препаратов: сульфаниламидов, салицилатов, антисептиков, гормональных препаратов, сахарина и др.

