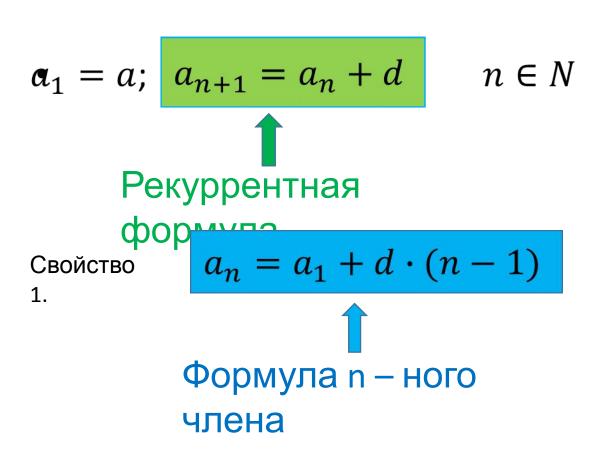
Лекция 3

Прогрессии

Повторение. Основные формулы арифметической прогрессии

Арифметическая прогрессия – это последовательность $\{a_n\}$, заданная таким образом:



$$S_n = \frac{a_1 + a_n}{2} \cdot n$$

Формула суммы арифметической прогрессии

Основные формулы арифметической прогрессии

Свойство Если
$$n + m = k + p$$
, то $a_n + a_m = a_k + a_p$

$$a_n + a_m = a_k + a_p$$

Пример:
$$a_{30} + a_{20} = a_{25} + a_{25} = a_{28} + a_{22} = a_{10} + a_{40} = a_{5} + a_{45} = a_{13} + a_{37} = a_{32} + a_{18} = a_{1} + a_{49}$$

Продолжить последовательности

- a) 3, 10, 17, 24,
- б) 100, 80, 60, 40,
- ··в) 1 , 11, 111, 1111,
- г) 1, 2, 4, 8, 16,.....
- д) 1, 10, 100,
- e) 1, 3, 9,
- ж) 500, 100, 20,

I еометрическая прогрессия

Геометрическая прогрессия — это последовательность $\{b_n\}$, заданная таким образом:

$$b_1=b; \qquad b_{n+1}=b_n\cdot q, \qquad n\in N \ , \qquad$$
где $b\neq 0, q\neq 0.$

Геометрическая прогрессия — это последовательность, каждый элемент которой, кроме первого, равен предыдущему, умноженному на одно и то же число $q \neq 0$.

Как называется такой способ задания прогрессии?

Рекуррентная формула геометрической прогрессии:

$$b_1 = b; \quad b_{n+1} = b_n \cdot q, \quad n \in N$$
 , где $b \neq 0, \quad q \neq 0.$

ПРИМЕР

Ы:

2,8,32,128,512,...;
$$b_1 = 2;$$
 $b_{n+1} = b_n \cdot 4;$ $q = 4;$ 2,-8,32,-128,512 $b_1 = 2;$ $b_{n+1} = b_n \cdot (-4);$ $q = -4;$ 27,9,3,1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$,...; $b_1 = 27;$ $b_{n+1} = b_n \cdot (\frac{1}{3});$ $q = \frac{1}{3};$ 8,8,8,8,...; $b_1 = 8;$ $b_{n+1} = b_n \cdot 1;$ $q = 1;$

Если геометрическую прогрессию оборвать на каком-то k - м элементе, получим конечную геометрическую прогрессию $b_1, b_2, b_3, ..., b_k$.

Свойства геометрической прогрессии

1. Пусть $\{b_n\}$ - геометрическая прогрессия; тогда ее n - й элемент можно задать

формулой

$$b_n = b_1 \cdot q^{n-1}$$

Доказательств Метод математической индукции. Шаг 1. $b_1=b_1\cdot 1=b_1\cdot q^0=b_1\cdot q^{1-1}$; о:

$$b_{2} = b_{1} \cdot q = b_{1} \cdot q^{1} = b_{1} \cdot q^{2-1};$$

$$b_{3} = b_{2} \cdot q = b_{1} \cdot q \cdot q = b_{1} \cdot q^{2} = b_{1} \cdot q^{3-1};$$

$$b_{4} = b_{3} \cdot q = b_{1} \cdot q^{2} \cdot q = b_{1} \cdot q^{3} = b_{1} \cdot q^{4-1};$$
...
$$b_{k} = b_{k-1} \cdot q = b_{1} \cdot q^{k-2} \cdot q = b_{1} \cdot q^{k-2+1} = b_{1} \cdot q^{k-1}$$

Шаг 2. дано: при n=k $b_k=b_1\cdot q^{k-1}$

доказать:
$$b_{k+1} = b_1 \cdot q^{k+1-1} = b_1 \cdot q^k$$
.

Доказательство: по определению геометрической прогрессии

$$b_{k+1} = b_k \cdot q \Rightarrow b_{k+1} = b_1 \cdot q^{k-1} \cdot q \Rightarrow b_{k+1} = b_1 \cdot q^{k-1+1} = b_1 \cdot q^k$$
, ч. т. д.

Формула n-ного члена геометрической прогресии: $b_n = b_1 \cdot q^{n-1}$

ПРИМЕР : $\{b_n\}$ - геометрическая прогрессия 2, 8, 32, 128, 512,...;

$$b_1 = 2$$
; $q = 4$

Найти: b_5 , b_8

$$b_5 = b_1 \cdot q^4 = 2 \cdot 4^4 = 512;$$
 $b_8 = b_1 \cdot q^7 = 2 \cdot 4^7 = 32768;$

Свойство 2. Формула суммы n элементов геометрической прогрессии

$$S_n = b_1 + b_2 + b_3 + \dots + b_n = b_1 \cdot \frac{1 - q^n}{1 - q}$$

Доказательств $S_n = b_1 + b_2 + b_3 + \dots + b_{n-2} + b_{n-1} + b_n$;

0:

по свойству 1
$$S_n = b_1 + b_1 \cdot q + b_1 \cdot q^2 + \dots + b_1 \cdot q^{n-3} + b_1 \cdot q^{n-2} + b_1 \cdot q^{n-1}$$
 (*)

Умножим обе части равенства (*) на q:

$$S_n \cdot q = (b_1 + b_1 \cdot q + b_1 \cdot q^2 + \dots + b_1 \cdot q^{n-3} + b_1 \cdot q^{n-2} + b_1 \cdot q^{n-1}) \cdot q$$

Раскроем скобки

$$S_n^{:} \cdot q = b_1 \cdot q + b_1 \cdot q^2 + b_1 \cdot q^3 + \dots + b_1 \cdot q^{n-2} + b_1 \cdot q^{n-1} + b_1 \cdot q^n \tag{**}$$

Вычтем из равенства (*) равенство (**):

$$S_n - S_n \cdot q = b_1 + b_1 \cdot q + b_1 \cdot q^2 + \dots + b_1 \cdot q^{n-3} + b_1 \cdot q^{n-2} + b_1 \cdot q^{n-1} - (b_1 \cdot q + b_1 \cdot q^2 + b_1 \cdot q^3 + \dots + b_1 \cdot q^{n-2} + b_1 \cdot q^{n-1} + b_1 \cdot q^n);$$

После раскрытия скобок в правой части члены с одинаковыми степенями взаимно уничтожатся, в левой части S_n вынесем за скобки и получим:

$$S_n(1-q) = b_1 - b_1 \cdot q^n; \quad S_n(1-q) = b_1(1-q^n);$$
 $S_n = b_1 \cdot \frac{1-q^n}{1-q},$ ч. т. д.

Задача 1(Г). Найти сумму первых пяти элементов S_5 геометрических прогрессий, приведенных в примере:

27, 9, 3, 1,
$$\frac{1}{3}$$
, $\frac{1}{9}$, $\frac{1}{27}$, ...; 8, 8, 8, 8, ...; Γ)

Фо β БMБMмы n элементов геометрической прогрессии:

$$S_n = b_1 + b_2 + b_3 + \dots + b_n = \sum_{i=1}^n b_i = b_1 \cdot \frac{1 - q^n}{1 - q}$$

для
$$n=5$$
 имеетвид: $S_5=b_1\cdot \frac{1-q^5}{1-q}$

$$b_1 = 2; q = 4; S_5 = b_1 \cdot \frac{1 - q^5}{1 - q} = 2 \cdot \frac{1 - 4^5}{1 - 4} = 2 \cdot \frac{1 - 1024}{-3} = 682;$$

$$b_1 = 2; q = 64; S_5 = b_1 \cdot \frac{1 - q^5}{1 - q} = 2 \cdot \frac{1 - (-4)^5}{1 - (-4)} = 2 \cdot \frac{1 + 1024}{5} = 410;$$

$$b_1 = 27; q = \frac{1}{3}; S_5 = b_1 \cdot \frac{1 - q^5}{1 - q} = 27 \cdot \frac{1 - \left(\frac{1}{3}\right)^5}{1 - \frac{1}{3}} = 27 \cdot \frac{1 - \frac{1}{3^5}}{\frac{2}{3}} = \frac{27 \cdot (243 - 1) \cdot 3}{2 \cdot 243} = \frac{121}{3}.$$

$$b_1 = 8; q = 1; S_7 = 8 \cdot 5 = 40.$$

$$b_1 = 8$$
; $q = 1$), $S_5 = 8 \cdot 5 = 40$.

ВОПРОС: почему не испол \S_3 $\Rightarrow b$ \uparrow $1-q^3$?

Задача 2(Г). Найти сумму первых десяти элементов S_{10} геометрической прогрессии, у которой $b_2+b_6=34$, $b_3+b_7=68$.

по фотримульни - го элемента геометрической прогрессии $b_n = b_1 \cdot q^{n-1}$. E:

$$b_2 = b_1 \cdot q$$
, $b_6 = b_1 \cdot q^5$; $b_3 = b_1 \cdot q^2$, $b_7 = b_1 \cdot q^6$.

используем условия

$$\begin{cases} b_1 \cdot q + b_1 \cdot q^5 = 34; \\ b_1 \cdot q^2 + b_1 \cdot q^6 = 68. \end{cases} \Rightarrow \begin{cases} b_1 \cdot q(1+q^4) = 34; \\ b_1 \cdot q^2(1+q^4) = 68. \end{cases} \Rightarrow$$

$$\begin{cases} b_1 \cdot q(1+q^4) = 34; \\ b_1 \cdot q \cdot q(1+q^4) = 68. \end{cases} \Rightarrow \begin{cases} b_1 \cdot q(1+q^4) = 34; \\ q \cdot b_1 \cdot q(1+q^4) = 68. \end{cases} \Rightarrow$$

 $q\cdot 34=68 \quad \Rightarrow \quad q=2$, подставим в первое уравнение и найдем b_1 :

$$b_1 \cdot q(1+q^4) = 34 \Rightarrow b_1 \cdot 2(1+2^4) = 34 \Rightarrow b_1 \cdot 34 = 34; b_1 = 1.$$

$$S_{10} = b_1 \cdot \frac{1 - q^{10}}{1 - q} = 1 \cdot \frac{1 - 2^{10}}{1 - 2} = 1023.$$

OTBET: 1023.