Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук

Международная конференция Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций

Влияние ультразвуковой обработки и наводороживания на усталостную долговечность и ударную вязкость сплава Ti-6Al-4V

Панин В. Е., Хайруллин Р. Р., Власов И. В., Гоморова Ю. Ф.

Введение

Нетравящиеся полосы $\alpha_2(Ti_3Al)$

Полосы $\alpha_2(Ti_3Al)$

Оптическое изображение структуры образца титанового сплава ВТ6 (поперечное сечение) после ультразвуковой финишной обработки; размер изображения 220×170 мкм²

ТЕМ-изображение наноструктуры в поверхностном слое образца титанового сплава ВТ6, подвергнутом ультразвуковой финишной обработке (а) и соответствующая картина микродиффракции (б); выделения α_2 (Ti₃Al) при старении сплава ВТ6 [*Carreon H., San Martin D., Caballero F.G., Panin V.E.* The effect of thermal aging on the strength and the thermoelectric power of the Ti-6Al-4V alloy // Phys. Mesomech. – 2017. – T. 20. – № 4. – C. 447–456.]

Результаты исследования и их обсуждение

Влияние различных обработок на усталостную долговечность сплава ВТ6

Обработка	Исходная	УЗО	Наводороживание	УЗО + Наводороживание
Усталостная долговечность (число циклов)	54000 ± 7000	70000 ± 9000	40000 ± 9000	17000 ± 4000
Эффект обработки	_	Увеличение в 1.3 раза	Уменьшение в 1.35 раза	Уменьшение в 4 раза

Кривые растяжение-деформация при одноосном растяжении образцов титанового сплава ВТ6 в отожженном состоянии (1) и подвергнутых ультразвуковой финишной обработке (2)

Кластерные модели ГПУ-ячейки в титане с гексагональной структурой (а) и ее трансформации в ОЦКячейку (б) при наличии атомов водорода в виртуальных вакансиях α и β в условиях знакопеременного изгиба

Состояние	Микротвердость Н _µ , МПа		
До поперечно-ви	3200		
Сплав ВТ6 после поперечно-	На поверхности и глубиной		
винтовой прокатки	до ~ 50 мкм	6400	
	В остальной части	5100	

Микротвердость образцов сплава ВТ6 до и после поперечно-винтовой прокатки

Спектры временного распределения аннигиляции позитронов в образцах ВТ6

		I ₁ , %	т ₁ , пс	I ₂ , %	т ₂ , пс	т _{ср.} , пс
ВТ6 исходный		100	150	0	0	150
ВТ6 после поперечно-	На поверхности	100	160	0	0	160
винтовой прокатки	В центре	100	150	0	0	150

Время жизни позитрона (т) на дислокации составляет 168-185пс, а на вакансии 220-225пс.

Образование в сплаве ВТ6 в результате поперечно-винтовой прокатки стабильной мартенситной фазы

Кривые распределения энергии электронов по импульсам в исследуемых образцах относительно эталонного образца бездефектного ВТ6

Ударная вязкость сплава ВТ6 в исходном состоянии (кривая 1) и после поперечно-винтовой прокатки (кривая 2) при низких температурах

Заключение

- 1. При ультразвуковой обработке сплава ВТ6 в поверхностном слое развиваются два процесса. Во-первых, образуется сплошной нетравящийся слой α₂(Ti₃Al), который снижает усталостную долговечность. Однако ниже этого слоя развивается второй процесс: образуются полосы α₂(Ti₃Al) фазы по мультиплетной схеме, которые увеличивают усталостную долговечность. Сложение этих двух эффектов дает увеличение усталостной долговечности сплава в 1,3 раза.
- Катастрофическое снижение усталостной долговечности после наводороживания предварительно обработанного ультразвуком сплава BT6 объясняется образованием зон ближнего порядка смещений с ОЦК решеткой по типу β-фазы.
- 3. Поперечно-винтовая прокатка создает в сплаве ВТ6 мартенситную фазу очень высокой прочности. Она предсказана методом позитронной аннигиляции и обнаружена методом просвечивающей электронной микроскопии. Высокая стабильность мартенситной фазы обусловливает снижение ударной вязкости сплава, обработанного поперечно-винтовой прокаткой.

Спасибо за внимание!