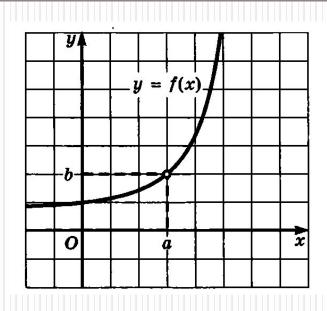
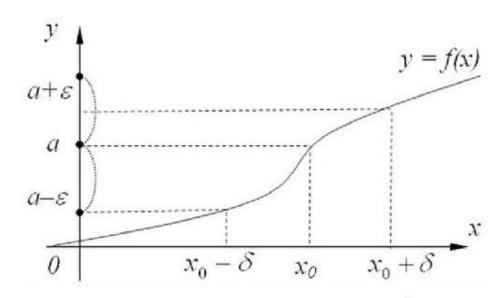
Предел функции в точке. Основные теоремы о пределах.



Выполнила студентка группы 11С Кузьменкова Марина

Предел функции в точке

Число а называют пределом функции f(x) при $x \rightarrow x_0$, если для любого сколь угодно малого $\varepsilon > 0$ существует $\delta > 0$ такое, что для



всех x из δ -окрестности точки x_0 справедливо:

$$f(x)$$
— a |< ε ; пишут:

$$\lim_{x \to x_0} f(x) = a$$

Методика вычисления пределов в точке

Если функция существует в точке x = a, то ее предел равен f(a).

Примеры вычисления пределов

Пример 1. Вычислить $\lim_{x \to 0} (2x+5)$

Решение. Подставим вместо х число 3 (т.к. х→3) и применим правила вычисления пределов.

$$\lim_{x \to 3} (2x+5) = \lim_{x \to 3} 2x + \lim_{x \to 3} 5 = 2 \bullet \lim_{x \to 3} x + \lim_{x \to 3} 5 =$$

$$=6+5=2 \cdot 3+5=11$$

Основные теоремы о пределах

Пусть f(x) и g(x) – функции, для которых существуют пределы $\lim_{x \to x_0} f(x) = A$ $\lim_{x \to x_0} g(x) = B$

Аналогично при $x \to \infty$

Теорема 1

Предел суммы (разности) двух функций равен сумме (разности) их пределов

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

Следствие

Функция может иметь только один предел при $x \to x_0$

Основные теоремы о пределах

Теорема 2

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Теорема 3

$$\lim_{x \to x} g(x) \neq 0$$

$$\lim_{x \to x_0} (f(x)/g(x)) = \lim_{x \to x_0} f(x) / \lim_{x \to x_0} g(x)$$

Следствие

- 1. $\lim_{x \to x_0} c \cdot f(x) = c \cdot \lim_{x \to x_0} f(x)$
- 2. $\lim_{x \to x_0} (f(x))^n = (\lim_{x \to x_0} f(x))^n, \quad n \in \mathbb{N}$