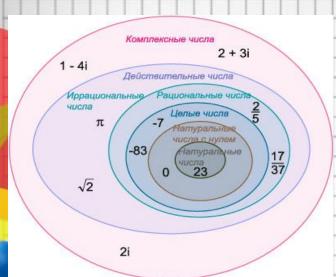


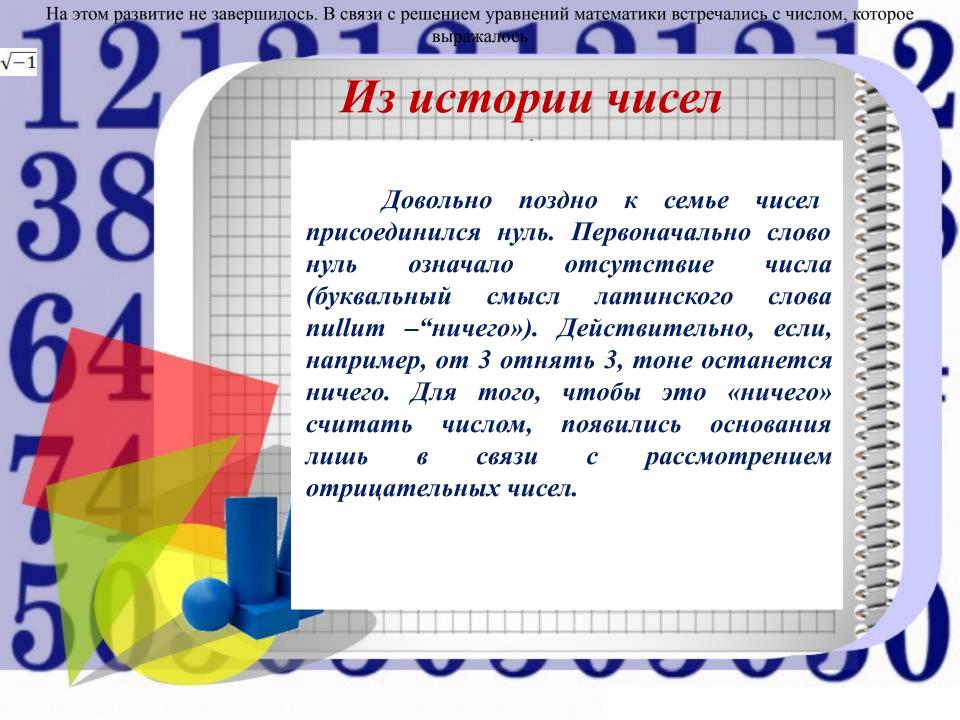
В результате изучения студенты должны знать:

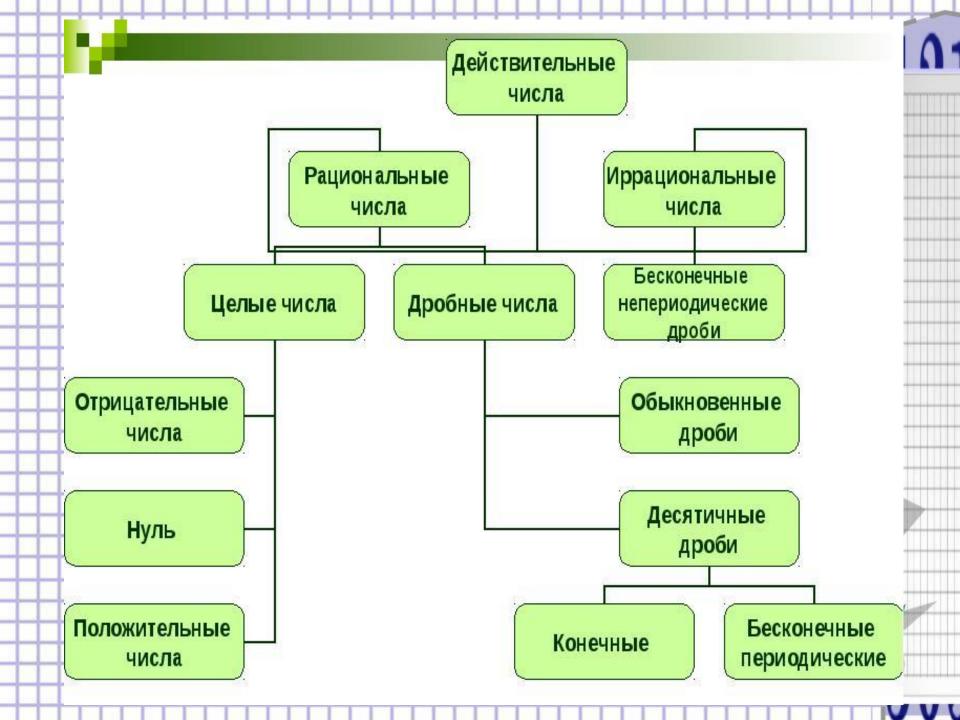
- -Понятие натуральных, целых и рациональных чисел.
- Понятие иррационального числа.
- Понятие действительных чисел.



В результате изучения темы студент должен уметь выполнять преобразования с действительными числами.







Натуральные числа

Натуральные числа (естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Множество всех натуральных чисел принято обозначать знаком N. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.



Операции над натуральными числами

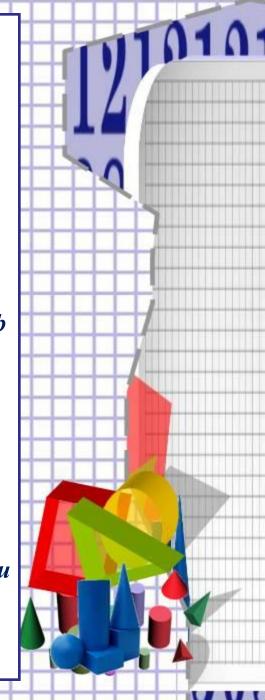
К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

Сложение. Слагаемое + Слагаемое = Сумма
Умножение. Множитель * Множитель = Произведение
Возведение в степень, а^b где а — основание степени и b
— показатель степени. Если основание и показатель
натуральны, то и результат будет являться
натуральным числом.

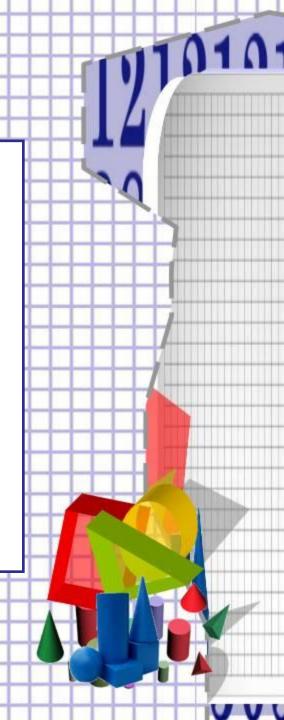
Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

Вычитание. Уменьшаемое Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).

<mark>Деление.</mark> Делимое / Делитель = (Частное, Остаток).



<u>Целые числа</u> – бывают положительными и отрицательными. Совокупность целых чисел образует множество целых чисел. Число вида а/в, rde a u b целые числа, причём $b \neq 0$ называется рациональным числом. Множество, состоящее из положительных и отрицательных дробных чисел, называется множеством рациональных чисел.



Основные свойства

Коммутативность сложения. A+B=B+A

Коммутативность умножения. $A \cdot B = B \cdot A$

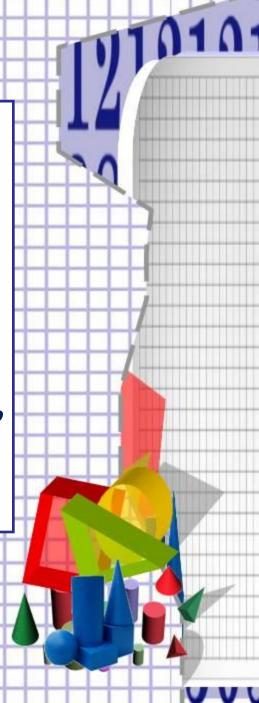
Ассоциативность сложения.

$$(A+B)+C=A+(B+C)$$

Aссоциативность умножения. (AB) C=A(BC)

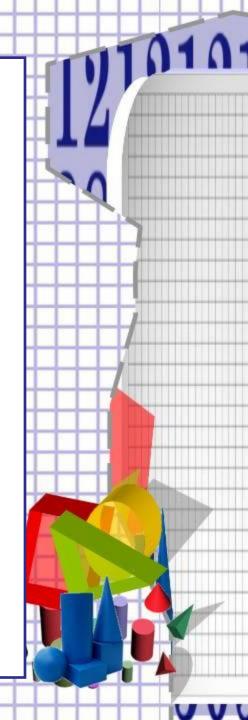
Дистрибутивность умножения относительно

сложения
$$\begin{cases} a(b+c) = ab + ac \\ (b+c)a = ba + ca \end{cases}$$

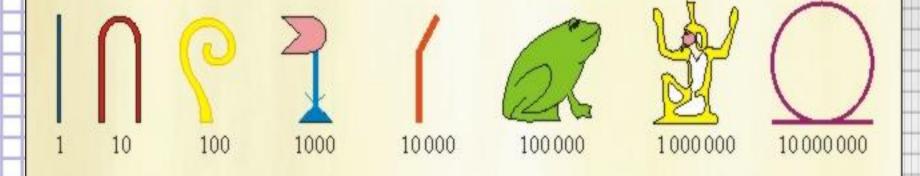


Числовые множества

Обозначение	Название множества
N	Множество натуральных чисел
Z	Множество целых чисел
Q=m/n	Множество рациональных чисел
I=R/Q	Множество иррациональных чисел
\boldsymbol{R}	Множество вещественных чисел

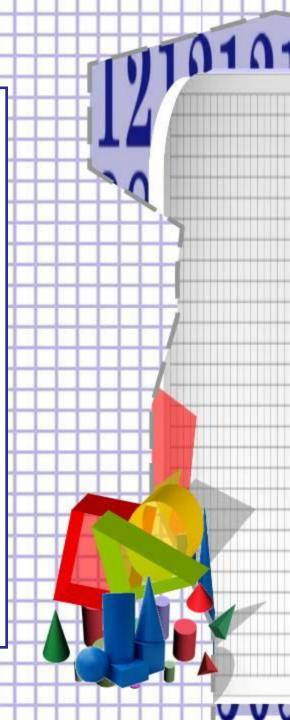


Египетские обозначения



2934

Любое рациональное число можно представить либо в виде конечной десятичной дроби, либо в виде бесконечной периодической десятичной дроби.



Периодические дроби.

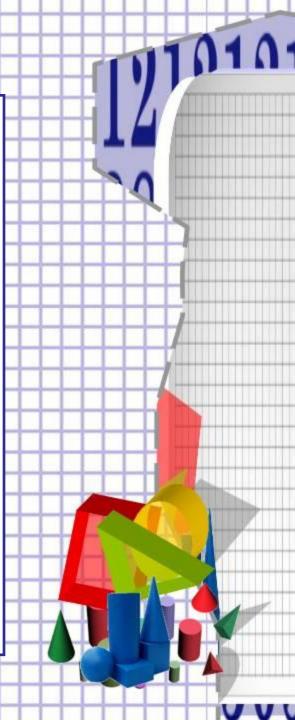
Определение: Периодические дроби бывают чистыми и смешанными.

Чистой периодической называется дробь, у которой период сразу после запятой.

$$\frac{19}{333}=\frac{1}{7}=0$$
, (142857)

Смешанной называется дробь, у которой между запятой и первым периодом есть одна или несколько повторяющихся цифр:

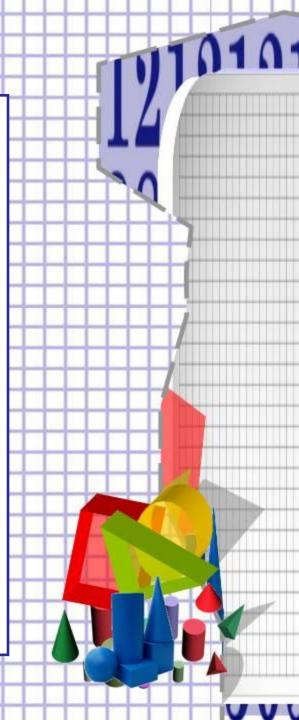
$$\frac{16}{30} = \frac{8}{15} = 0,5(3).$$



Обращение смешанной периодической дроби в обыкновенную:

Чтобы обратить смешанную периодическую дробь достаточно из числа стоящего до второго периода вычесть число стоящее до первого периода, и полученную разность взять числителем, а знаменателем написать цифру в периоде столькими нулями сколько цифр между запятой и периодом:

$$0,5(3) = \frac{53-5}{90} = \frac{48}{90} = \frac{8}{15};$$



Комплексные числа

Термин «комплексные числа» ввел немецкий математик Карл Гаус.

Вид комплексного числа

 $X^2 = -1$

Х=і -корень уравнения

i- комплексное число, такое, что i^2 =-1

Запись комплексного числа в общем виде

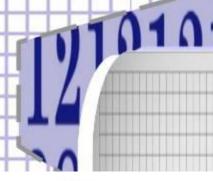
A + B i

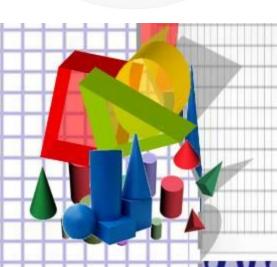
А и В - действительные числа

А - действительная часть

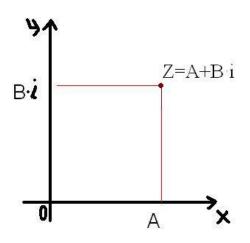
В - мнимая часть

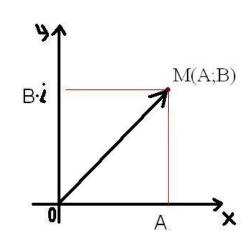
і - мнимая единица

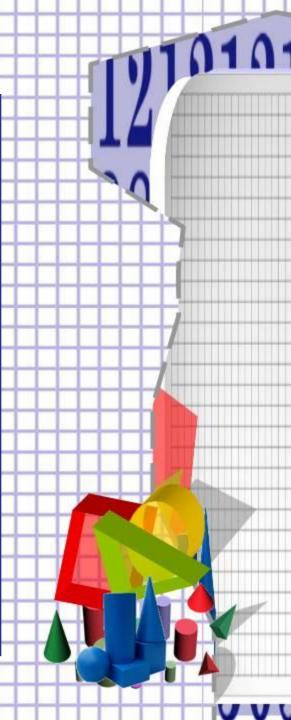




Геометрическая интерпретация комплексного числа





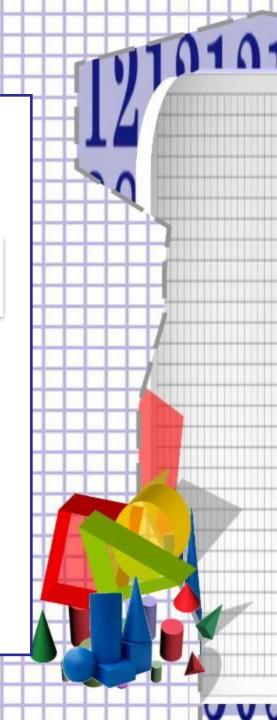


Комплексные взаимносопряженные числа

$$Z=A - B i$$

$$Z=A-Bi$$
 сопряженное $Z=A+Bi$

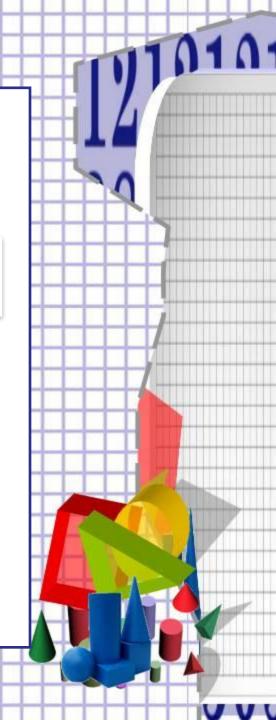
Комплексные числа называются взаимно сопряженными, если их действительные части равны, а мнимые отличаются знаками



Комплексные взаимносопряженные числа

$$Z=A - B i$$

$$Z=A-Bi$$
 сопряженное $Z=A+Bi$



Блиц-викторина

- 1. Может ли сумма двух отрицательных чисел быть числом натуральным?
- 2. Можно ли утверждать, что разность двух натуральных чисел является натуральным числом?
- 3. Может ли разность двух отрицательных чисел быть целым положительным числом?
 - 4. Может ли произведение двух отрицательных чисел быть числом отрицательным?
- 5. Может ли разность двух целых чисел быть равной одному из них?
- 6. Может ли сумма двух целых положительных чисел быть равной 0?
- 🧵 7. Может ли произведение двух целых положительных чисел быть равным 0?
- 8. Может ли произведение двух целых чисел быть равным 0?
- 9. Какой знак имеет произведение всех целых чисел от -20 до 20?
- 🔳 10. Может ли сумма двух отрицательных чисел быть больше их частного?