Отбор проб атмосферного воздуха

В воздухе загрязняющие компоненты могут находится в виде:

Газ – вещество или смесь веществ, находящихся устойчиво в газообразном состоянии во всем интервале температур и давлений, характерных для работы газоочистного оборудования.

Пар – газ, который может переходить в жидкое или твердое состояние (и обратно) в упомянутом выше интервале температур и давлений. Аэрозоли:

Дым – тонкодисперсный твердый аэрозоль с частицами субмикронных размеров.

Пыль

- а) дисперсная фаза твердого аэрозоля, не относящегося к категории дымов;
- б) сыпучий порошкообразный продукт, образующийся в результате выделения из газа и осаждения дисперсной фазы твердого аэрозоля. *Туман* а) жидкий аэрозоль; б) дисперсная фаза жидкого аэрозоля.

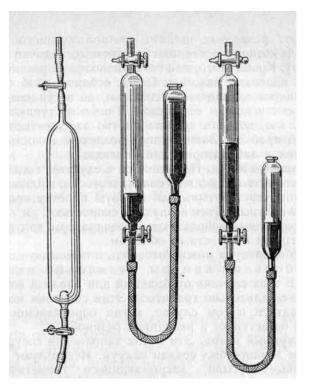
Дисперсная фаза - совокупность мелких однородных твёрдых частиц, капелек жидкости или пузырьков газа, равномерно распределённых в окружающей (дисперсионной) среде.

Правила отбора проб воздуха

- 1. При определении приземной концентрации отбор проб проводят на высоте 0,5-3,5 м от уровня земли.
- 2. Наблюдения по полной программе проводят ежесуточно в 1, 7, 13, 19 ч по местному времени; по неполной программе 7, 13, 19 ч; в период НМУ– через каждые 3ч.
- 3. Продолжительность отбора проб разовых концентраций 20 мин, суточные концентрации определяют из данных, получаемых непрерывно в течение 24ч.
- 4. Отбор проб воздуха должен сопровождаться наблюдениями за дымовыми факелами источников выбросов и основными метеорологическими параметрами: скорость и направление ветра, температура и влажность воздуха, атмосферные явления, состояние погоды и подстилающей поверхности.

Методы отбора проб

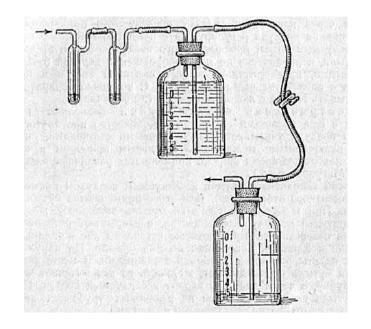
<u>Аспирационный метод</u> - пропускание воздуха через поглотительный прибор с определенной скоростью. Используется для исследования газообразных примесей и для анализа примесей в виде аэрозолей (пыли).


Для отбора проб используются аспираторы, пылесосы и другие приборы и устройства, пропускающие воздух.

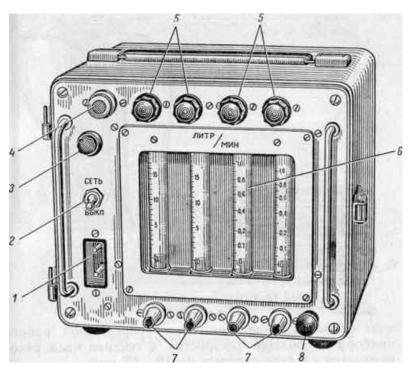
<u>Отбор проб в сосуды</u> ограниченной емкости. Используется для исследования газообразных примесей.

Для отбора проб используются различные емкости: газовые пипетки, бутыли, резиновые камеры, шприцы.

Отбор проб воздуха с помощью газовых пипеток.


Виды аспираторов

Ручные - резиновые груши, ручные насосы (поршневые и беспоршневые), откалиброванные шприцы различной вместимостью.



Водяные - специальные соизмеренные ёмкости, заполненные водой, выполняющие роль рабочего тела.

Электромеханические - электроаспиратор переносной с ручным способом регулирования расхода воздуха

- 1 колодка для присоединения к прибору электрического шнура;
- 2 тумблер для включения и выключения прибора;
- 3 гнездо предохранителя;
- 4 предохранительный клапан для предотвращения перегрузки электродвигателя при отборе проб воздуха с малыми скоростями и облегчения запуска прибора;
- 5 ручки вентилей ротаметров;
- б ротаметры;
- 7 штуцеры для присоединения резиновых

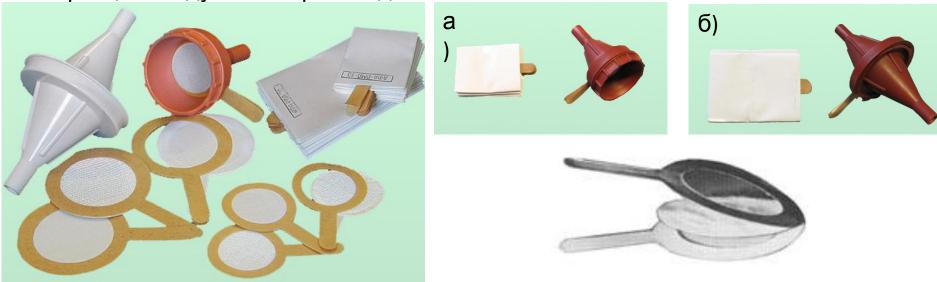
Блок отбора проб на поглотительные приборы

Передвижной экологический пост контроля атмосферы

Фиксация анализируемых ингредиентов пробы

1) Поглотительные приборы

Для улавливания веществ, находящихся в воздухе в виде паров и газов, применяются стеклянные сосуды различной конструкции.


поглотитель Рихтера

2) Основным методом концентрирования проб при анализе аэрозолей являются механическая фильтрация воздушного потока через инерционные преграды (различные фильтры).

Аналитические фильтры аэрозольные (АФА). Предназначены для исследования и контроля аэродисперсных примесей (аэрозолей), содержащихся в воздухе или других газах, при разовом периодическом отборе проб. Фильтры АФА изготовляются различной модификации применительно по методу анализа.

Держатели фильтров (а-открытый, б-закрытый) предназначены для крепления аналитических аэрозольных фильтров в процессе забора образцов воздуха или производственных газов.

Аспиратор «ПУ 3Э» предназначен для обеспечения отбора проб воздуха на определение содержания пыли и аэрозолей путем прокачки заданного объема пробы через фильтры. Аспиратор применяется при проведении санитарного и экологического контроля воздуха рабочей зоны и атмосферного воздуха. Отобранные пробы анализируются в лабораторных

условиях с применением стандартных методик.

YODOKTODIA OTIAKIA.

Основные технические характеристики:

Количество параллельно отбираемых проб — от 1 до 3;

Суммарный расход воздуха: от 200 л/мин до 400 л/мин;

Продолжительность отбора пробы — в диапазоне от 2 до 30 мин;

Объем пробы воздуха измеряется встроенным в устройство механическим счетчиком объема;

Электрическое питание устройства: от сети переменного тока напряжением 220В частотой 50 Гц;

Габаритные размеры аспиратора — 187 х 215 х 560 мм.

Масса аспиратора — не более 3 кг.

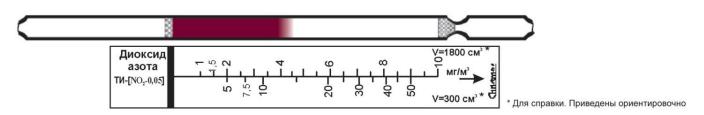
Измерение концентраций вредных веществ индикаторными трубками

Концентрацию вредных веществ в воздухе производственных помещений во многих случаях можно быстро установить экспрессным методом с помощью индикаторных трубок. Индикаторные трубки используются для обнаружения опасных веществ в рабочей зоне или в окружающей среде.

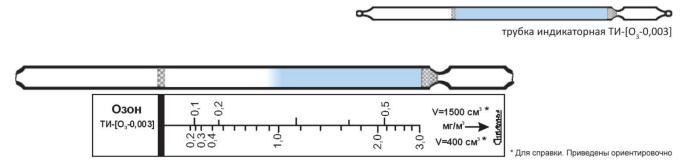
Основными преимуществами указанного метода являются:

- 1. Быстрота проведения анализа и получение результатов непосредственно на месте отбора пробы воздуха.
- 2. Простота метода и аппаратуры, что позволяет проводить анализ лицам, не имеющим специальной подготовки.
- 3. Малая масса, комплектность и низкая стоимость аппаратуры.
- 4. Достаточная чувствительность и точность анализа; не требуются регулировка и настройка аппаратуры перед проведением анализов.
- 5. Не требуются источники электрической и тепловой энергии.

Индикаторная трубка представляет собой герметичную стеклянную трубку, заполненную твёрдым носителем, обработанным активным реагентом. В качестве носителей реактивов применяют различные порошкообразные материалы: силикагель, оксид алюминия, фарфор, стекло и др.



Колориметрические индикаторные трубки Линейно-колористические индикаторные трубки


Описание: [NO₂].

Изменение цвета: с белого на бордово-коричневый.

Время измерения: от 2 до 20 минут

Принцип реакции: NO_{2} + о-дианизидин \rightarrow бордово-коричневый продукт

реакции.

Описание: [O₃].

Изменение цвета: с голубого на белый.

Время измерения: от 3 до 12 минут.

Принцип реакции: O_3 + индиго-кармин \rightarrow бесцветный продукт реакции.

Приборы газового анализа

Классификация по функциональным возможностям:

Индикаторы - это приборы, которые дают качественную оценку газовой смеси по наличию контролируемого компонента (по принципу «много - мало»). Горят все индикаторы - компонента много, горит один - мало.

Газосигнализаторы служат для своевременного обнаружения горючих газов и паров в воздухе производственных помещений и промышленной территории в концентрациях, значительно меньших взрывоопасных. При достижении концентрацией порогового значения, срабатывают элементы сигнализации (оптические индикаторы, звуковые устройства).

Газоанализаторы автоматические позволяют получить не только количественную оценку концентрации измеряемого компонента с индикацией показаний по объему или по массе, но также могут быть снабжены любыми вспомогательными функциями, такими как пороговые устройства, выходные аналоговые или цифровые сигналы, принтеры и т.д.

Газоанализатор - измерительный прибор для определения качественного и количественного состава смесей газов.

Независимо от вида своей конструкции каждый газоанализатор состоит из следующих основных частей:

- первичного преобразователя чувствительного элемента (датчика или сенсора), в котором осуществляется преобразование, с помощью того или иного метода измерений, концентрации искомого газа в измеримый электрический сигнал;
- измерительно-показывающего модуля, который осуществляет обработку сигнала, его сравнение с заданными пороговыми, отображение измеренных величин на цифровом индикаторе;
- блока питания, обеспечивающего прибор энергией;
- корпуса, обеспечивающего защиту прибора от воздействия окружающей среды.

Газоанализатор диоксида серы С-310A

Основные типы газоанализаторов

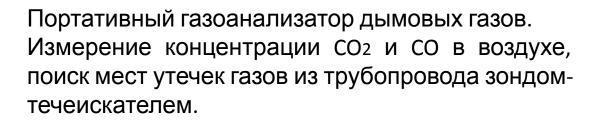
Ручные анализаторы газа – это переносные устройства, которые обладают высокой точностью и служат для проверки автоматических анализаторов газа в процессе их эксплуатации. Они также предназначены для лабораторных и контрольных анализов.

Автоматические анализаторы газа – это приборы, которые обеспечивают оперативное определение концентраций контролируемых анализируемых смесях компонентов, производить запись получаемых результатов позволяют исследований, а при необходимости выдают соответствующие транслируют сигналы И команды на исполнительные устройства.

Классификация газоанализаторов

по конструктивному исполнению:

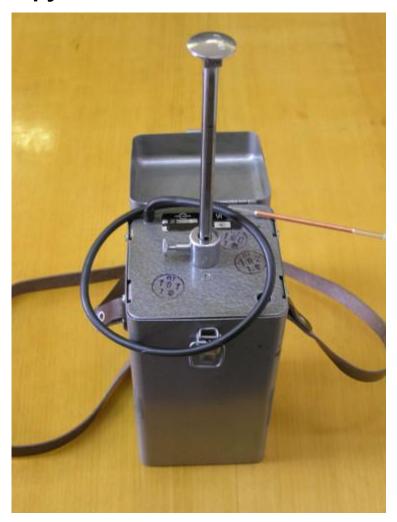
- портативные;
- переносные;
- стационарные.

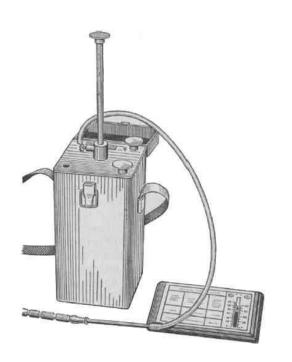

по количеству измеряемых компонентов:

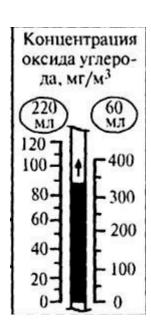
- однокомпонентные;
- многокомпонентные.

по назначению:

- для обеспечения безопасности работ;
- для контроля технологических процессов;
- для контроля промышленных выбросов;
- для контроля выхлопных газов автомобилей, для экологического контроля.




Портативный газоанализатор взрывозащищенного исполнения, со встроенным микрокомпрессором предназначен для измерения объемной доли горючих газов в воздухе и выдачи звуковой и световой сигнализации при превышении установленных пороговых значений объемной доли газов. К газам, которые прибор способен идентифицировать, относятся метан и пропан.


Газоанализатор CHEMIST 402 Измеряемые газы: угарный газ (CO), диоксид углерода (CO2), кислород (O2).

Многокомпонентные воздушные смеси горючих газов.

Универсальный газоанализатор УГ-2 предназначен для измерения массовых концентраций вредных веществ в воздушной среде производственных помещений, промышленной зоны при аварийных ситуациях, промышленных выбросах с помощью **индикаторных трубок**.

Переносные газоанализаторы ГАНК-4 с автономным питанием предназначены для автоматического разового, периодического или непрерывного контроля атмосферного воздуха, воздуха рабочей зоны, в промышленных выбросах и в технологических процессах с сигнализацией о превышении ПДК.

Прибор содержит сменные химкассеты с бумажной лентой, с нанесенным на нее газочувствительным слоем. Через ленту с газочувствительным слоем, с помощью встроенного насоса, прокачивается воздух. Оптоэлектронный считыватель определяет скорость потемнения ленты и передает информацию на микропроцессор. Результаты расчетов через доли секунды появляются на цифровом экране в мг/м3 в соответствии с требованиями стандартов.

Хемилюминесцентный газоанализатор NO и NO2 в атмосферном воздухе (P-310A)

Принцип действия.

Газоанализатор представляет собой стационарный автоматический прибор непрерывного действия, конструктивно выполненный в одном блоке. Принцип действия газоанализатора - гетерогенная хемилюминесценция (газ – "твердое тело"). Датчиком газа служит хемилюминесцентный твердотельный сенсор.

Сущность этого метода состоит в том, что химическое взаимодействие молекул анализируемого компонента с датчиком сопровождается люминесценцией. Интенсивность хемилюминесценции пропорциональна содержанию анализируемого компонента в базовой смеси. Газоанализатор работает в автоматическом режиме измерений. Прибор P-310A обеспечивает непосредственное отображение на цифровом табло текущей концентрации оксида и диоксида азота или усредненных значений за 20 или 60 минут измерений.

Примерный перечень вопросов к экзамену по дисциплине «Контроль загрязнений природной среды»

- 1. Современное состояние проблемы загрязнения окружающей среды. Основные загрязнители атмосферы и их источники, способы удаления загрязняющих веществ из атмосферы. Классификация источников загрязнения воздуха. Влияние метеопараметров на состояние загрязнения воздуха.
- 2. Нормирование качества атмосферного воздуха. Предельно-допустимые концентрации. Класс опасности вещества и другие нормативы загрязнения окружающей среды.
- 3. Экологический мониторинг окружающей среды. Классификация типов систем мониторинга природной среды. Организация сети наблюдений. Стационарные, маршрутные, подфакельные посты наблюдений. Фоновые станции мониторинга окружающей среды.
- 4. Отбор проб атмосферного воздуха для анализа. Правила отбора проб. Методы отбора проб. Приборы для отбора проб.

Литература

Методы и приборы контроля окружающей среды. Экологический мониторинг : учебное пособие / И.В. Якунина, Н.С. Попов. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2009. – 188 с.

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ: Учебное пособие / М.А. Пашкевич, В.Ф.Шуйский. Санкт-Петербургский государственный горный институт (технический университет). СПб, 2002. 89 с.

Израэль Ю.А. Экология и контроль состояния окружающей среды. – М.: Гидрометеоиздат, 1984. – 560 с.