

РЕШЕНИЕ ЗАДАЧ НА КОМПЬЮТЕРЕ

АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ

9 класс

Домашнее задание:

§ 2.1-2.2.3, PT № 64, 72

Учебник с. 58-59

Задание:

Запишите основные этапы решения задач с помощью компьютера.

Водитель автомобиля, движущегося с некоторой постоянной скоростью, увидев красный свет светофора, нажал на тормоз. После этого скорость автомобиля стала уменьшаться каждую секунду на 5 метров. Требуется найти расстояние, которое автомобиль пройдёт до полной остановки.

Первый этап

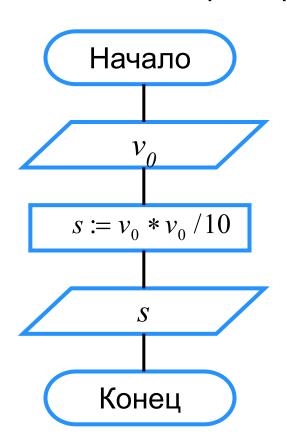
Дано:

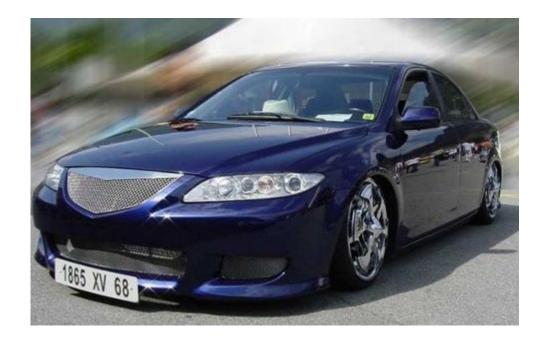
 v_{0x} - начальная скорость;

 $v_{_{\scriptscriptstyle X}}$ - конечная скорость (равна нулю);

 $a_{_{\scriptscriptstyle Y}}$ - ускорение (равно -5 м/с)

Требуется найти: расстояние, которое продат автолючить до полной остановки.


Второй этап


$$s_{x} = \frac{v_{0x}(v_{x} - v_{0x})}{a_{x}} + \frac{a_{x}}{2} \left(\frac{v_{x} - v_{0x}}{a_{x}}\right)^{2}$$

$$s_x = \frac{v_{0x}^2}{2a_x}$$
 При a_x = - 5м/с получим: $s_x = \frac{v_{0x}^2}{10}$

Третий этап

Представим алгоритм решения задачи в виде блок-схемы:

Четвёртый этап

Запишем данный алгоритм на языке программирования Паскаль:

```
program n_1;
    var v0, s: real;
begin
    writeln ('Вычисление длины пути торможения автомобиля');
    write ('Введите начальную скорость (м/с)> ');
    readln (v0);
    s:=v0*v0/10;
    writeln ('До полной остановки автомобиль пройдет', s:8:4,' м.')
end.
```

Пятый этап

Протестировать составленную программу можно, используя ту информацию, что при скорости 72 км/ч с начала торможения до полной остановки автомобиль проходит 40 метров.

Шестой этап

Выполнив программу несколько раз при различных исходных данных, можно сделать вывод: чем больше начальная скорость автомобиля, тем большее расстояние он пройдет с начала торможения до полной остановки.

ОДНОМЕРНЫЕ МАССИВЫ ЦЕЛЫХ ЧИСЕЛ

АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ

9 класс

Массив

Определение массива найдите в учебнике §2.2 и запишите в тетрадях.

Одномерный массив

Решение разнообразных задач, связанных с обработкой массивов, базируется на решении таких типовых задач, как:

- суммирование элементов массива;
- поиск элемента с заданными свойствами;
- сортировка массива.

Описание массива

Общий вид описания массива:

var <имя_массива>: array [<мин_знач_индекса> ..

<maкc_знач_индекса>] **of** <тип_элементов>;

БВИЈОБИ КМИ

Тип элементов

var a: array [1..10] of integer;

Минимальное значение индекса

> Максимальное значение индекса

Значение 1-го элемента массива

const b: **array** [1..5] **of** integer = (4, 2, 3, 5, 7);

Массив **b** с постоянными значениями описан в разделе описания констант.

Способы заполнения массива

1 способ. Ввод каждого значения с клавиатуры:

for i:=1 **to** 10 **do read** (a[i]);

2 способ. С помощью оператора присваивания (по формуле):

for i:=1 to 10 do a[i]:=i;

a[i]=2*a[i]+63 способ. С помощью оператора присваивания (случайными числами):

randomize;

for i:=1 to 10 do a[i]:=random(100);

Вывод массива (с.66)

1 способ.

```
for i:=1 to 10 do write (a[i], ' ');
```

45 21 56 43 83 56 69 34 28 15

2 способ.

for i:=1 to 10 do writeln ('a[', i, ']=', a[i]);

a[1]=4 a[2]=1 a[3]=6 a[4]=3 a[5]=8 a[6]=5 a[7]=9 a[8]=4 a[9]=8 a[10]=7

Прислать на проверку конспект урока + результаты теста.

Ссылка на тест в группе по информатике.

Сделайте скрин страницы (или фото), как пройдете тест и пришлете мне в ЛС.