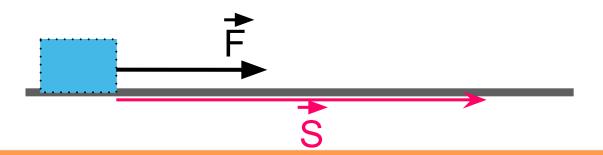
Работа и мощность электрического тока

Электроприборы

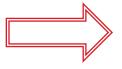


Механическая работа

Работа совершается в том случае, если под действием некоторой силы совершается перемещение.

$$[A] = Дж$$

Работа электрического тока


При прохождении электрического тока по проводнику, электрическое поле заставляет заряженные частицы двигаться упорядоченно, следовательно оно совершает работу.

Работа электрического тока показывает какую работу совершает электрическое поле.

Работа электрического тока

$$[A] = Дж$$

$$U = \frac{A}{q}$$

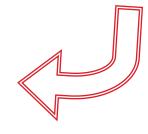
$$A = U \cdot q$$

$$q = I \cdot t$$

$$A = U \cdot I \cdot t$$

Работа электрического тока

$$A = U \cdot I \cdot t$$



$$A = I^2 \cdot R \cdot t$$

$$A = \frac{U}{R^2}t$$

$$I = \frac{U}{R}$$

$$U = I \cdot R$$

Мощность электрического тока

Мощность – физическая величина, характеризующая скорость выполнения работы.

$$P = \frac{A}{t}$$

$$[P] = Bm$$

$$Bm = \frac{\mathcal{J}\mathcal{H}}{c}$$

Мощность электрического тока

$$P = \frac{A}{t}$$

$$P = U \cdot I$$

$$P = I^2 \cdot R$$

$$P = \frac{U^2}{R}$$

Мощность электрического тока

Различные электроприборы имеют разную мощность.

Закон Джоуля - Ленца

- Электрический ток нагревает проводник. Это явление вам хорошо известно.
- В результате работы электрического тока внутренняя энергия проводника увеличивается.
- Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии.
- Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи.

Мы уже знаем:

 $A = U \cdot I \cdot t$

- т.к. сказанному выше Q = A (количество теплоты равно работе тока)
- ◆ Из закона Ома U = I * R, значит
- Q = I*R*I*t

Закон Джоуля - Ленца

$$Q = I^2 R \cdot t$$