Общая характеристика планет-гигантов

Под понятием планеты-гиганты подразумевают 4 планеты Солнечной системы: Юпитер, Сатурн, Уран и Нептун. Основные отличия планет-гигантов от других планет Солнечной системы это:

- а) большие размеры планет
- б) большие массы планет
- в) быстрое вращение вокруг своих осей
- г) большое сжатие результат быстрого вращения
- д) большое число спутников
- е) наличие колец
- ж) малая плотность

Особенности строения планет-гигантов

В ряд особенностей планет-гигантов можно отнести:

- а) эти планеты не имеют твердых поверхностей
- б) существование значительных магнитных полей этих планет
- в) наличие радиационных поясов

VARLDINUAD

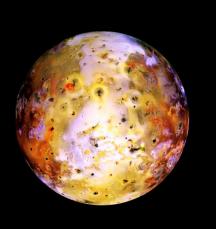
г) несмотря на то, что, на поверхности преобладают низкие температуры, внутри планет температура довольно высокая (может достигать нескольких десятков тысяч

Юпитер

Самая большая планета Солнечной системы.

Его масса в 318 раз больше земной и составляет около 1/1050 массы Солнца.

Экваториальный радиус Юпитера равен 71400 км (в 11,2 раза больше земного).


Полярный радиус равен 66900 км, т.е. сжатие

- Гравитационное ускорение около 2500 см/сек2.
- Средняя плотность 1,3 г/см3.
- Видимая поверхность Юпитера представляет собой облачный покров. Наиболее заметны темные красноватые полосы, вытянутые параллельно экватору. Светлые промежутки между ними называются зонами.
- Полосатая структура диска Юпитера является следствием преимущественно зонального (т.е. ориентированного вдоль параллелей) направления ветра в атмосфере Юпитера. Механизм, который приводит в действие общую циркуляцию на Юпитере, такой же, как и на Земле.

- На Юпитере могут формироваться циклоны.
 Крупные циклоны могут быть очень устойчивы (время жизни до 105 лет)
- Спектроскопическими наблюдениями установлено присутствие в атмосфере Юпитера молекулярного водорода H2, гелия He, метана CH4, аммиака NH3, этана C2H6, ацетилена C2H2 и водяного пара H2O. Элементный состав атмосферы (и всей планеты в целом) не отличается от солнечного.
- Полное давление у верхней границы облачного слоя составляет около 1 атм. Облачный слой имеет сложную структуру. Верхний ярус состоит из кристалликов NH3, ниже должны быть расположены облака из кристаллов льда и капелек воды.

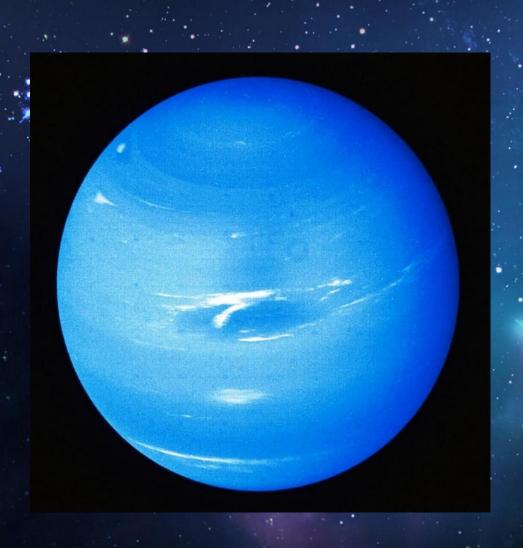
Вокруг Юпитера обращается 13 спутников. Четыре из них открыл Галилей - это Ио, Европа, Ганимед и Каллисто. По размерам они примерно такие же, как Луна. Галилеевы спутники вращаются вокруг оси синхронно с движением вокруг Юпитера и обращены к емя одной стороной.



Сатурн

Расположен примерно вдвое дальше от Солнца, чем Юпитер, и обращается вокруг Солнца за 29,5 года. Экваториальный радиус Сатурна равен 60400 км, масса в 95 раз больше земной, ускорение силы тяжести на экваторе 1100 см/сек2. Сатурн имеет заметное сжатие диска, равное 1/10, т.е. больше, чем у Юпитера.

- Спектроскопические исследования обнаружили в атмосфере Сатурна Н2, СН4, С2Н2, С2Н6. Элементный состав, по-видимому, не отличается от солнечного, т.е. планета состоит на 99% из водорода и гелия..Глубина атмосферы (водород и гелий - в сверхкритическом состоянии) может достигать половины радиуса планеты
- Инфракрасные наблюдения показывают температуру Сатурна около 950К. Так же как и у Юпитера, больше половины излучаемой анергии обусловлено потоком


У Сатурна известно 10 спутников: Мимас, Энцелад, Тефия, Диона, Рея, Титан, Гиперион, Япет, Феба, Янус. Титан - единственный спутник в Солнечной системе, на котором найдена атмосфера. Все спутники, кроме Фебы, обращаются вокруг планеты в прямом направлении.

MIMAS CALYPSO METHONE RHEA PANDORA HYPERION **IAPETUS** TITAN **ENCELADUS** JANUS **EPIMETHEUS TETHYS** DIONE **PROMETHEUS** HELENE

Уран

Виден только в телескоп и выглядит маленьким зеленоватым диском. Большая полуось орбиты планеты равна около 19,2 а.е., а период обращения вокруг Солнца - 84 года.

Масса Урана в 14,6 раза больше земной, радиус 24800 км. Уран

- Детали на диске Урана уверенным образом не различаются, но наблюдаются периодические колебания блеска. По этим колебаниям и по эффекту Доплера был определен период обращения вокруг оси 10ч49м. Удалось установить также направление оси вращения планеты, причем оказалось, что экватор Урана наклонен к плоскости его орбиты на 820, а направление вращения обратное.
- Средняя плотность Урана 1,6 г/см3. Эта планета содержит больше тяжелых элементов, чем Юпитер и Сатурн.
- Уран имеет 5 спутников: Ариэль, Умбриэль, Титания, Оберон, Миранда. Плоскости их орбит почти перпендикулярны к плоскости орбиты планеты и движутся они в сторону ее вращения.

Внутренние спутники Урана

Корделия Офелия Бианка Кпе Пак • Маб • Крессида Дездемона Джульетта Порция Розалинда • Купидон • Белинда • Пердита

Нептун

Линейный радиус Нептуна равен 25050 км, масса - 17,2 массы Земли.

Большая полуось орбиты планеты равна около 30,1 а.е., а период обращения вокруг Солнца почти 165 лет.

Период вращения был определен спектроскопически и составляет 15,8ч плюс/минус 1ч

• Направление вращения прямое. В результате спектроскопических наблюдений в спектрах Нептуна найдены водород и метан. Средняя плотность Нептуна - 1,6 г/см3:

• У Нептуна два спутника: Тритон и Нереида. Тритон принадлежит к числу крупнейших спутников в Солнечной системе (его радиус равен 2000 км) и движется вокруг планеты в обратном направлении

