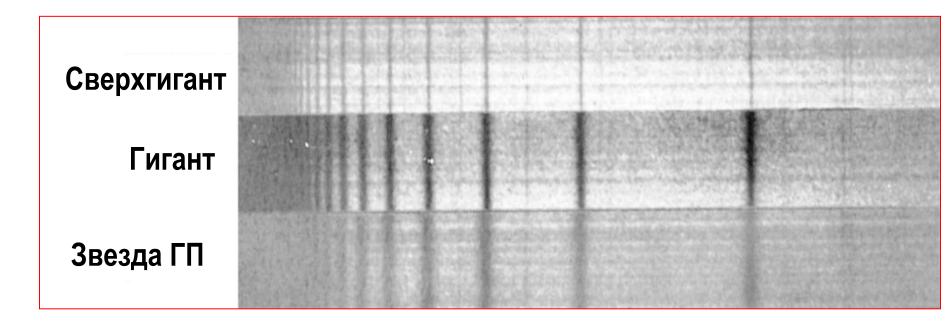
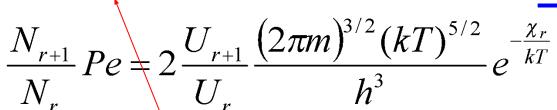

Вид спектров звезд различных спектральных классов



04... B0... A0... F0... G0... K0... M0

Зависимость интенсивностей линий от спектрального класса

Вид спектра для разных звезд


Класс светимости звезд можно установить по ширине спектральных линий: линии уже в спектрах сверхгигантов и шире у звезд-карликов.

Это связано с различием физических условий в атмосферах звезд разных светимостей.

Исходные формулы

Основные формулы – это следующие формулы

$$Z_{ri} = \frac{N_{ri}}{N} = \frac{N_{ri}}{N_r} \frac{N_r}{N}$$
, $N = \sum_r N_r$ полное число атомов данного элемента

$$N = \sum_{r} N_{r}$$

формула Саха

Найдем это отношение

Запишем формулу Саха для последовательных степеней ионизации

$$\frac{N_1}{N_0} P_e = 2 \frac{U_1}{U_0} \frac{(2\pi m)^{3/2} (kT)^{5/2}}{h^3} e^{-\frac{\chi_0}{kT}} = K_0$$

$$\frac{N_2}{N_1} P_e = 2 \frac{U_2}{U_{10}} \frac{(2\pi m)^{3/2} (kT)^{5/2}}{h^3} e^{-\frac{\chi_1}{kT}} = K_1$$
(1)

$$\frac{N_{r+1}}{N_r}P_e = 2\frac{U_{r+1}}{U_r}\frac{(2\pi m)^{3/2}(kT)^{5/2}}{h^3}e^{-\frac{\chi_r}{kT}} = K_r$$

Перемножим последовательно выражения (1):

$$\begin{split} \frac{N_1}{N_0} P_e &= K_0 \\ \frac{N_2}{N_0} P_e^2 &= K_0 K_1 \\ \frac{N_2}{N_0} P_e^3 &= K_0 K_1 K_2 \end{split} \qquad \frac{N_{r+1}}{N_0} P_e^{r+1} &= K_0 K_1 K_2 ... K_r \end{split}$$

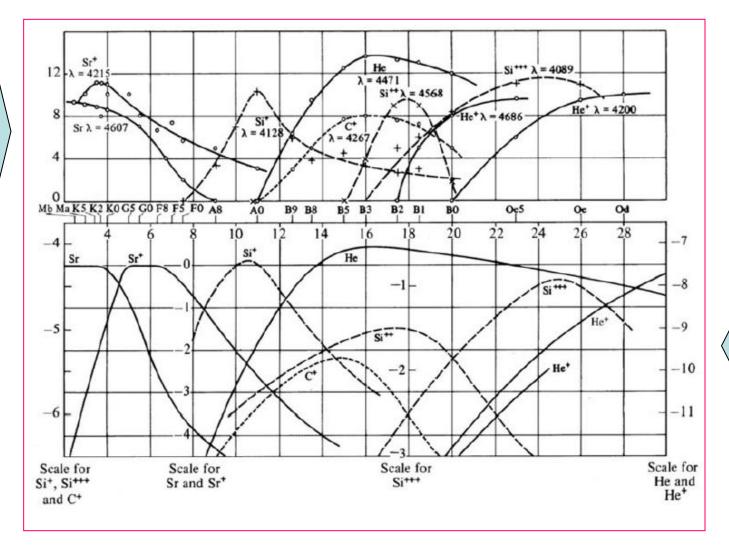
Тогда:

$$N = \sum_{r} N_{r} = N_{0} \left[1 + \frac{N_{1}}{N_{0}} + \frac{N_{2}}{N_{0}} + \dots \frac{N_{r+1}}{Nr} \right] =$$

$$= N_{0} \left[1 + \frac{K_{0}}{P_{e}} + \frac{K_{0}K_{1}}{P_{e}^{2}} + \dots + \frac{K_{0}K_{1}K_{2}\dots K_{r}}{P_{e}^{r+1}} \right] = N_{0}S(T, Pe)$$

В итоге:

$$Z_{ri} = \frac{g_{ri}}{U_r} e^{-\frac{E_{ri}}{kT}} \frac{K_0 K_1 K_2 ... K_{r-1}}{P_e^r S(T.P_e)} = \frac{g_{ri}}{U_r} e^{-\frac{E_{ri}}{kT}} \frac{\prod_{r=0}^{r-1} K_r}{P_e^r S(T.P_e)}$$


Энергии последовательных степеней ионизации сильно различаются друг от друга. Поэтому атомы обычно находятся в двух соседствующих степенях ионизации, например, γ и $\gamma+1$. Возьмем для примера нейтральные и однажды ионизованные Атомы. Тогда

$$Z_{0i} \approx \frac{g_{0i}}{U_0} \frac{e^{-\frac{E_{0i}}{kT}}}{1 + \frac{K_0}{P_e}}$$

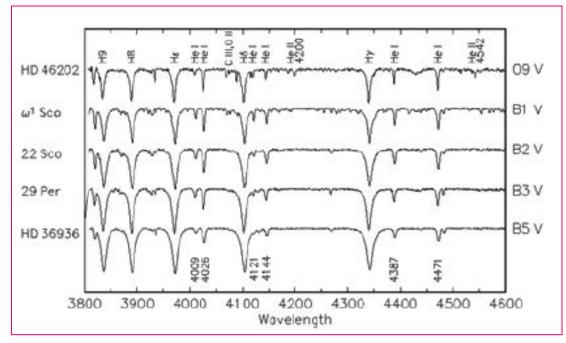
Потенциалы ионизации атомов х (в эв)

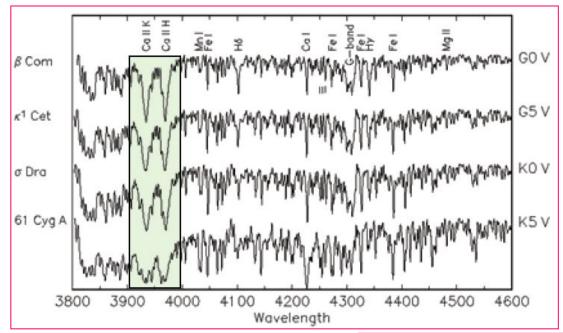

Стадии ио изации															
Атом		I	11	Ш	IV	v	VI	VII	VIII	IX	х	XI	XII	XIII	XIV
1	Н	13.598 44													
2	He	24.58741	54.41778												
3	Li	5.39172	75.640 18	122,454											
4	Be	9.322 63	18.21116	153.897	217.713										
5	В	8.298 03	25.15484	37.931	259.366	340.22									
6	C	11.26030	24.383 32	47.888	64.492	392.08	489.98								
7	N	14.534 14	29.6013	47,449	77.472	97.89	552.06	667.03							
8	O	13.61806	35.11730	54.936	77.413	113.90	138.12	739.29	871.41						
9	F	17.42282	34.97082	62.708	87.140	114.24	157.17	185.19	953.91	1 103.1					
10	Ne	21.564 54	40.963 28	63.45	97.12	126.21	157.93	207.28	239.10	1 195.8	1 362.2				
11	Na	5.139 08	47.2864	71.620	98.91	138.40	172.18	208.50	264.25	299.9	1 465.1	1 648.7			
12	Mg	7.646 24	15.035 28	80.144	109.265	141.27	186.76	225.02	265.96	328.1	367.5	1761.8	1963		
13	AI	5.985 77	18.828 56	28.448	119.99	153.83	190.49	241.76	284.66	330.1	398.8	442.0	2086	2304	
14	Si	8.15169	16.345 85	33.493	45.142	166.77	205.27	246.49	303.54	351.1	401.4	476.4	523	2438	2 673
15	P	10.486 69	19.7694	30,203	51.444	65.03	220.42	263.57	309.60	372.1	424.4	479.5	561	612	2817
16	S	10.36001	23.3379	34.79	47.222	72.59	88.05	280.95	328.75	379.6	447.5	504.8	564	652	707
17	CI	12.96764	23.814	39.61	53.465	67.8	97.03	114.20	348.28	400.1	455.6	529.3	592	657	750
18	Ar	15.759 62	27.629 67	40.74	59.81	75.02	91.01	124.32	143.46	422.5	478.7	539.0	618	686	756
19	K	4.340 66	31.63	45.806	60.91	82.66	99.4	117.56	154.88	175.8	503.8	564.7	629	715	787
20	Ca	6.113 16	11.87172	50.913	67.27	84.50	108.78	127.2	147.24	188.5	211.3	591.9	657	727	818
21	Sc	6.561 44	12.799 67	24.757	73.489	91.65	111.68	138.0	158.1	180.0	225.2	249.8	688	757	831
22	Ti	6.8282	13.575 5	27.492	43.267	99.30	119.53	140.8	170.4	192.1	215.9	265.1	292	788	863
23	v	6.7463	14.66	29.311	46.71	65.28	128.1	150.6	173.4	205.8	230.5	255.1	308	336	896
24	Cr	6.766 64	16.4857	30.96	49.16	69.46	90.64	161.18	184.7	209.3	244.4	270.7	298	355	384
25	Mn	7.434 02	15.63999	33.668	51.2	72.4	95.6	119.20	194.5	221.8	248.3	286.0	314	344	404
26	Fe	7.9024	16.1878	30.652	54.8	75.0	99.1	124.98	151.06	233.6	262.1	290.2	331	361	392
27	Co	7.8810	17.083	33.50	51.3	79.5	103	131	160	186.2	276.2	305	336	379	411
28	Ni	7.6398	18.168 84	35.19	54.9	75.5	108	134	164	193	224.6	321	352	384	430
29	Cu	7.72638	20.29240	36.841	55.2	79.9	103	139	167	199	232	266	369	401	435
30	Zn	9.394 05	17.964 40	39.723	59.4	82.6	108	136	175	203	238	274	311	412	454

Обозначения степени ионизации (на примере атома углерода): СІ - нейтральный атом, СІІ – однажды ионизованный атом, СІІ – дважды ионизованный атом и т.д.

Поведение интенсивностей линий вдоль спектральной классификации

Соотношение Саха-Больцмана N_{rs}/N для разных элементов и разных температур (шкала в единицах 1000 К наверху)

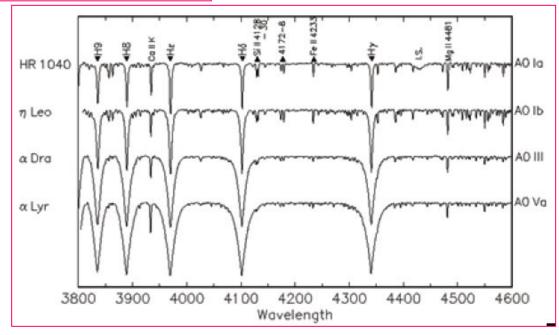



Пример1: Спектральные классы О4 – О9

Классификация хорошо устанавливается по поведению линий HeI и HeII

Пример 2: Спектральные классы О9 – В5

Линии Hell уже исчезают, линии Hel достигают максимума при классе B2 и затем ослабевают



Пример 3: спектральные глассы G0 – K5

Хорошим индикатором являются линии Call

Пример 4: эффекты светимости у звезд AO

Видно, как усиливаются линии водорода при увеличении давления в атмосферах звезд

Основные уравнения теории ЗА

$$\frac{dP_g}{d\tau_v} = \frac{g}{\alpha_v}$$
 - уравнение гидростатического равновесия

 $d\tau_v = -\alpha_v dz$ - установление оптической шкалы

$$P_g = kT * (N_H + N_{He} + ... + N_e) + P_{_{\mathit{луч}}}$$
 - уравнение состояния

$$F = \frac{\sigma T_{eff}}{\pi}$$
 - установление эффективной ттемператры

$$\mu \frac{dI(\tau_v, \mu)}{d\tau_v} = I(\tau_v, \mu) - S(\tau_v)$$
 - уравнение переноса

Соотношение « $P_g - P_e - T$ » (1)

При решении уравнения гидростатического равновесия определяется величина газового давленя $P_g(\tau)$. Но во многих используемых в дальнейшем формулах (например, в формулах Саха-Больцмана) используется электронное давление $P_e(\tau)$. А эти формулы, в частности, необходимы для определения непрозрачности вещества $\alpha(\tau) = \alpha(\tau) = P_e(\tau)$. Таким образом возникает необходимость найти соотношение $P_e(\tau) = P_e(P_g)$.

Для горячих звезд это соотношение устанавливается довольно просто, так как основным поставщиком свободных электронов является ионизация водорода. Тогда

$$N_p \approx N_e$$
, $N_g = N_p + N_e \approx 2N_e$, $P_g \approx 2P_e$

Тяжелые элементы также поставляют электроны, но содержание этих элементов на несколько порядков меньше содержания водорода.

При низких температурах водород уже не ионизуется, и основным поставщиком свободных электронов становятся легко ионизуемые тяжелые элементы (C, Na, Mg, Fe и др.). Эти элементы находятся в нейтральном, ионизованном и , возможно, в дважды ионизованном состояниях.

Соотношение $\ll P_g - P_e - T \gg (2)$

2. Поэтому ниже в формуле Саха

$$\frac{N_{r+1}}{N_r}P_e = \frac{2U_{r+1}}{U_r} \frac{(2\pi m)^{\frac{3}{2}} (kT)^{\frac{5}{2}}}{h^3} e^{-\frac{\chi_r}{kT}}$$
(1)

мы ограничимся состояниями r=0,1,2 . Полное число атомов элемента с зарядом равно $N_z=N_{0Z}+N_{1Z}+N_{2Z}$. Сперва допустим, что данным значениям P_g и T соответствует

первоначальное значение $P_{\scriptscriptstyle e}$.

Для каждого элемента с зарядом формуле (1) вычислим следующие

отношения:

$$\begin{split} \frac{N_{r=1,Z}}{N_{r=0,Z}} &\equiv \frac{N_{1Z}}{N_{0Z}}, \quad \frac{N_{r=2,Z}}{N_{r=1,Z}} \equiv \frac{N_{2Z}}{N_{1Z}} \\ \frac{1}{x_{1Z}} &= \frac{N_{Z}}{N_{1Z}} = \frac{N_{0Z}}{N_{1Z}} + \frac{N_{1Z}}{N_{1Z}} + \frac{N_{2Z}}{N_{1Z}} \\ \frac{1}{x_{2Z}} &= \frac{N_{Z}}{N_{2Z}} = \frac{N_{0Z}}{N_{1Z}} \frac{N_{1Z}}{N_{2Z}} + \frac{N_{1Z}}{N_{2Z}} + \frac{N_{2Z}}{N_{2Z}} \end{split}$$

Соотношение $\ll P_g - P_e - T \gg (3)$

3. Далее: $N_{s \partial po} = \sum_Z N_Z$ - полное число ядер элемента $\sum_Z N_Z x_{1Z}$ - число электронов, поставляемых при первой ионизации

 $\sum 2N_{Z}x_{2Z}$ - число электронов, поставляемых при второй ионизации

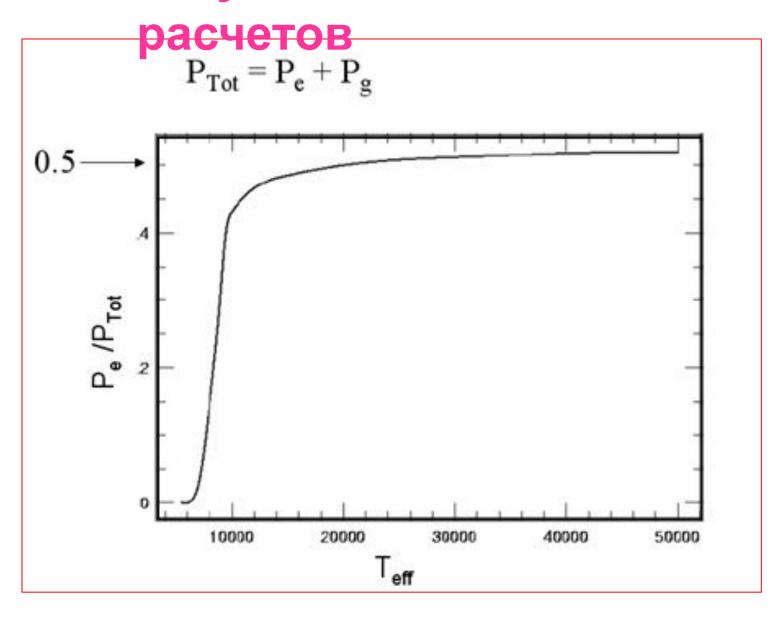
В итоге, среднее число электронов \overline{N}_{ρ} в расчете на одно ядро равно:

$$\overline{N}_e = \frac{\sum_Z N_Z x_{1Z} + 2\sum_Z N_Z x_{2Z}}{\sum_Z N_Z} = \frac{\sum_Z \varepsilon_Z x_{1Z} + 2\sum_Z \varepsilon_Z x_{2Z}}{\sum_Z \varepsilon_Z}$$
 Здесь $\varepsilon_Z = \frac{N_Z}{N_H}$ - химическое содержание элементов по отношению к водороду.

Соотношение «
$$P_g - P_e - T$$
 » (4)

4. Теперь можно получить искомое соотношение:

$$\frac{P_g}{P_e} = \frac{(N_{uon} + N_{amom} + N_e)kT}{N_e kT} = \frac{N_{sopo} + N_e}{N_e} = \frac{\overline{N}_e + 1}{\overline{N}_e}$$


$$P_e = P_g \frac{\overline{N}_e}{\overline{N}_e + 1}$$

5. Полученное значение может не совпасть с первоначальным значением P_e . Поэтому уравнение (2) придется решать методом итераций. Расчеты показывают для частных случаев, что:

$$P_{e}pprox 0.5 P_{g}$$
 $P_{e}\sim P_{g}^{1/2}$ (горячие звезды)

6. Мы рассмотрели простую ситуацию. Но в реальности в звездной атмосфере могут присутствовать отрицательные ионы (H⁻, H₂⁻, He⁻) и молекулярные образования. Поэтому задача в этом случае усложняется. Ее решение можно найти в нашей монографии.

Результаты

