Экзаменационные вопросы по ФЯР

Выполнила: ст. гр. С18-АЭ Шиганова Анна

Вопрос 5 Решение уравнения диффузии в сферической геометрии с источником. Граничные условия

Рассмотрим точечный источник в бесконечной однородной диффузионной среде.

- 1) Выберем систему координат с началом в точечном источнике;
- 2) В этой системе распределение нейтронов сферически симметрично
- 3) Однородное уравнение принимает вид:

$$\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)\Phi - \frac{1}{L^2}\Phi = 0$$

где r- расстояние от точечного источника ,Ф - поток, L – длина диффузии

Граничные условия для данной задачи

- 1. Поток Ф конечен всюду, за исключением источника, то есть при всех r>0
- 2. Полное число нейтронов, проходящих сквозь поверхность сферы $(4\pi r^2)$, должно равняться мощности источника при стремлении радиуса к нулю.

Если J - плотность потока нейтронов на поверхности сферы, то это условие (условие источника) выражается:

 $\lim_{r\to\infty} 4\pi r^2 J = q_0$, где q_0 — мощность источника

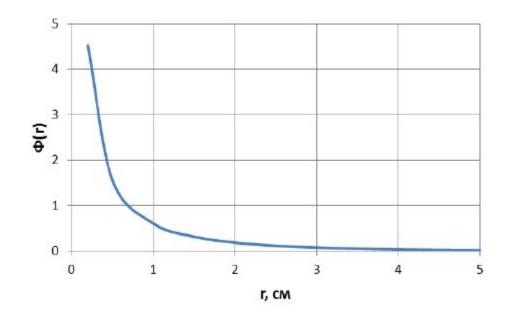
Нахождение произвольных постоянных

$$\Phi = \frac{A \cdot e^{-\frac{r}{L}}}{r} + \frac{C \cdot e^{\frac{r}{L}}}{r}$$

где A и C – произвольные постоянные, подлежащие определению из граничных условий

Из 1 условия очевидно, что C=0, так как в противном случае поток становился бы бесконечным при $r \to \infty$

Согласно второму граничному условию источника $A = \frac{q_0}{4\pi D}$


4) Подставляем значение А и (С=0) в

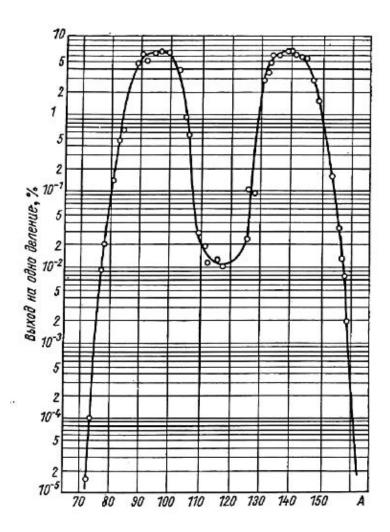
$$\Phi = \frac{A \cdot e^{-\frac{r}{L}}}{r} + \frac{C \cdot e^{\frac{r}{L}}}{r}$$

5) Получаем окончательно $\Phi(r) = \frac{q_0}{4\pi D} \frac{e^{-r/L}}{r}$

Это выражение дает стационарное распределение нейтронного потока вокруг точечного источника в бесконечной среде.

Поток в каждой точке заданной среды зависит только от расстояния r до источника.

Вопрос 31


Реакция деления и ее характеристики. Взаимодействие нейтронов с ядрами среды. Сечения реакций. Характеристики нейтронного поля. Число реакций в единице объема.

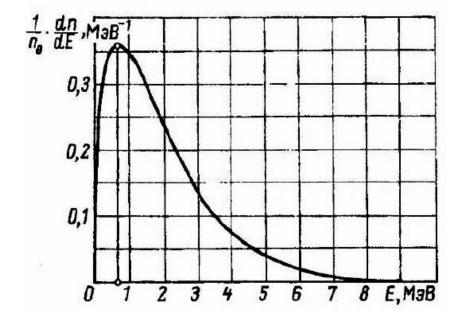
Веакция деления - экзотермическая реакция - с выделением энергии. В процессе деления освобождаются нейтроны, которые инициируют реакцию деления.

Деление характеризуется следующими параметрами:

- сечением деления σ_f ;
- числом мгновенных нейтронов на 1 акт деления ν;
- η числом нейтронов, выделяющихся на 1 акт поглощения;
- $\alpha = \frac{\sigma_{\gamma}}{\sigma_{f}}$ вероятностью тепловому нейтрону поглотиться по отношению к делению;

$$\eta = \frac{\nu}{(1+\alpha)}$$
 где α, ν, η , σ_f - зависят от Е и А.

Общий вид распределения осколков по массе (на рис.) сохраняется независимо от того, какое ядро делится и какая энергия была у нейтрона. Средняя энергия на 1 акт деления Е=200 МэВ. Осколки - это голые ядра, которые пробегая несколько микрометров становятся нормальными, приобретая электроны.


Спектр нейтронов деления представлен на рисунке. Он может быть аппроксимирован следующим выражением:

$$s(E) = 0.48e^{-E} \sinh \sqrt{(2E)}$$

где s(E)—число нейтронов деления в единичном интервале энергии.

Площадь под кривой $\int_{0}^{\infty} s(E) dE$ равна единице, т. е. s(E) нормирована на один

нейтрон; Е-энергия нейтронов в МэВ.

Область тепловых нейтронов

 U^{235} -единственный природный делящийся элемент, который образует критическую массу. U^{233} и Pu^{239} – искусственные элементы, которые также образуют критическую массу. Их основные характеристики для энергии E=0,0253 эB, соответствующей тепловому равновесию нейтронного газа при

 $T=20^{\circ}\mathrm{C}$

Среднее число мгновенных нейтронов на один акт деления

Нуклид	υ	$\frac{dv}{dE}$, 1/МэВ
^{233}U	2,51	0,115
^{235}U	2,43	0,115
²³⁹ Pu	2,88	0,110

Баланс энергии при делении

Энерговыделение при делении складывается из: кинетической энергии осколков деления - E_k , кинетической энергии мгновенных нейтронов - E_n , энергии мгновенных γ -квантов - $E_{\gamma 1}$, энергии β -частиц, испускаемых продуктами деления - E_{β} , энергии запаздывающих γ -квантов, испускаемых продуктами деления - $E_{\gamma 2}$ и энергии, уносимой антинейтрино - E_v . Суммарная энергия — энергия деления - E_f [МэВ] представлена в табл. для трех делящихся изотопов.

Значение энергии деления для основных делящихся изотопов, МэВ

Ядро	E_k	E_n	$E_{\gamma 1}$	E_{β}	$E_{\gamma 2}$	$E_{\rm v}$	E_f
U-233	160,5	5,0	7,0	9,0	7,0	10	198,5
U-235	166,0	4,9	7,2	9,0	7,2	10	204,3
Pu-239	171,5	5,8	7,0	9,0	7,0	10	210,3

Взаимодействия нейтронов с ядрами среды

Нейтроны взаимодействуют с ядрами среды.

Мера этого взаимодействия - сечение взаимодействия – эффективная площадь ядра мишени относительно налетающего нейтрона.

Поглощение – включает все виды взаимодействия в результате которых образуется новое ядро и новые частицы (в том числе и нейтроны)

Потенциальное рассеяние — рассеяние нейтронной волны на потенциале ядра без проникновения нейтронной волны внутрь ядра. Идет при любой кинетической энергии нейтрона (σ_p)

Рассеяние – новых ядер не образуется, происходит перераспределение кинетической энергии и момента количества движения между нейтроном и ядром

Кинетические энергии исходного и испущенного нейтронов неодинаковы. В тепловом реакторе за счёт реакций рассеяния идёт процесс уменьшения кинетической энергии нейтронов - замедление.

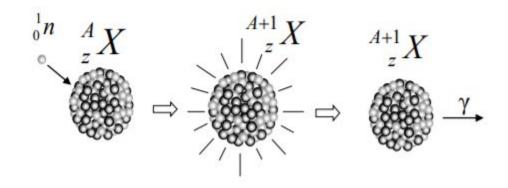
Замедлители:

водород, дейтерий, бериллий, углерод, кислород, цирконий.

Упругое рассеяние: суммы кинетических энергий ядра и нейтрона до и после рассеяния равны (σ_{el}) робой

$$(E_{_{\mathcal{R}\partial pa}} + E_n)_{_{\partial o}} = (E_{_{\mathcal{R}\partial pa}} + E_n)_{_{noc,ne}}$$

Неупругое рассеяние: сумма кинетических энергий ядра и нейтрона после рассеяния оказывается ниже, чем их сумма до рассеяния


Часть энергии после рассеяния идет на увеличение потенциальн (σ_{in}) ргии ядра

$$(E_{_{\it H}\it dpa} + E_{_{\it n}})_{\it do} > (E_{_{\it H}\it dpa} + E_{_{\it n}})_{\it nocne}$$

Радиационный захват — реакция поглощения нейтрона в результате которой нейтрон захватывается ядром и вся энергия возбуждения уносится γ — квантами (σ_c) ${}^A_Z B + n = {}^{A+1}_Z B * \to {}^{A+1}_Z B + \gamma$

Наиболее склонные к радиационному захвату ядра называют поглотителями нейтронов:

бор-10, самарий-149, ксенон-135, европий, кадмий, гадолиний U-235 и Pu-239 также являются поглотителями

Деление – составное ядро распадается на несколько осколков (σ_f)

Деление ядра — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. Это основной тип реакций в работе ядерного реактора, обеспечивающая выделение энергии К делению склонны чётно-нечётные ядра тяжёлых элементов

$$_{Z}^{A}X + _{0}^{1}n \rightarrow _{Z}^{A+1}X^{*} \rightarrow _{Z1}^{A1}X_{1} + _{Z2}^{A2}X_{2} + (2 \div 3)_{0}^{1}n$$

Характеристики нейтронного поля

Нейтронное поле - это совокупность свободных нейтронов, движущихся и определённым образом распределённых в объёме материальной среды (активной зоны).

Характеристики нейтронного поля:

- плотность нейтронов n;
- скорость нейтронов v (или их кинетическая энергия);
- плотность потока нейтронов Ф;
- плотность тока нейтронов І.

Плотность нейтронов

Плотность нейтронов (n) - это число нейтронов, находящихся в данный момент времени в единичном объёме среды.

Это статическая характеристика, показывающая наличие нейтронов в единичном объеме.

$$n = dN/dV$$
, [нейтр./см³]

Скорость нейтронов

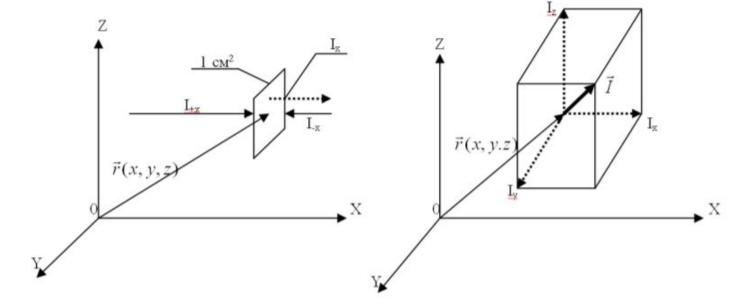
По энергетическому спектру нейтроны классифицируются на:

- быстрые (E > 0,1 MэB)
- промежуточные $(0,625 \ni B \le E \le 0,1 M \ni B)$
- тепловые (E < 0,625 эВ)

Энергетический спектр тепловых нейтронов – спектр Максвелла:

$$n(E)dE = n_0 CE \exp(-E/kT)dE$$

Плотность потока нейтронов


Плотность потока нейтронов (Ф) - это отношение числа нейтронов, ежесекундно падающих на поверхность элементарной сферы, к величине диаметрального сечения этой сферы.

Это суммарный ежесекундный путь всех нейтронов в 1 см3 среды. Величина скалярная.

$$\Phi = n \cdot v$$

Плотность тока нейтронов

Плотность тока нейтронов (I) — это вектор, модуль которого численно равен разности чисел нейтронов, ежесекундно пересекающих единичную плоскую площадку, перпендикулярную направлению этого вектора, в двух противоположных направлениях.

Число реакций в единице объема

Число взаимодействий нейтронов в единице объема за единицу времени

 $v \cdot n \cdot 1$ c = сумма путей всех нейтронов за 1 с

 $\frac{v \cdot n}{\lambda}$ = $v \cdot n \cdot \Sigma$ = $\Phi \cdot \Sigma$ – число взаимодействий нейтронов в 1 объема за 1 времени

 $N_a = \Phi \cdot \Sigma_a$ = число поглощений в 1 объема в 1 времени

 $N_f = \Phi \cdot \Sigma_f$ = число делений

$$3,1 \cdot 10^{10} \cdot q_v = N_f = \Phi \cdot \Sigma_f$$
 q_v - объемная плотность энерговыделения в активной зоне [Вт/см³]