Вредные производственные факторы. Нормирование. Защита (продолжение)

План лекции

- 4. Электромагнитные поля
- 5. Инфракрасное излучение
- 6. Ультрафиолетовое излучение (УФИ)
- 7. Лазерное излучение (ЛИ)
- 8. Ионизирующие излучения
- 9. Естественное и искусственное освещение

4. Электромагнитные поля

Основные характеристики ЭМП:

- Длина волны *λ*
- Частота колебаний *f*
- Скорость распространения \mathbf{S}

$$c = \lambda \times f$$

- Вектор напряженности электрического поля *E, B/м*
- Вектор напряженности магнитного поля *H, A/м*
- Плотность потока энергии *\$*

$$S = \frac{P}{4 \times \pi \times R^2}$$

Зоны ЭМП:

- 1. Зона индукции I (ближняя зона) радиус **R ≤ λ/2**π
- 2. Зона интерференции II (промежуточная) радиус **λ/2π < R < 2π λ**
- 3. Зона излучения III (дальняя) - радиус **R ≥ 2π λ**

ПОЛЯ

Спектр электромагнитных

	излучений 	_	
Название ЭМИ	Visity icitiviti	Диапазон частот, Гц	Длины волн, м
Статические	Постоянные ЭМП	0	-
Низкочастотны	Крайне-	3(10 ⁰ 10 ²)	10 ⁸ 10 ⁶
e	и сверхнизкие Инфра- и очень низкие, низкие	3(10 ² 10 ⁴)	10 ⁶ 10 ⁴
Радиочастотны	Длинные волны (ДВ)	3(10 ⁴ 10 ⁵)	10 ⁴ 10 ³
e	Средние волны (СВ)	3(10 ⁵ 10 ⁶)	10 ³ 10 ²
	Короткие волны (КВ)	3(10 ⁶ 10 ⁷)	10 ² 10 ¹
	Ультракороткие (УКВ)	3(10 ⁷ 10 ⁸)	10 ¹ 10 ⁰
	Микроволны (СВЧ)	3(10 ⁸ 10 ¹¹)	10 ⁰ 10 ⁻³
Оптические	Инфракрасные	3(10 ¹¹ 10 ¹⁴)	10 ⁻³ 10- ⁶
	Видимые	3(10 ¹⁴)	(0,390,76)10 ⁻⁶
	Ультрафиолетовые	3(10 ¹⁴ 10 ¹⁵)	10 ⁻⁶ 10 ⁻⁷
Ионизирующие	Рентгеновское излучение	3(10 ¹⁵ 10 ¹⁹)	10 ⁻⁷ 10 ⁻¹¹
	Гамма-изпучение	3(10 ¹⁹ 102 ²)	10-11 10-14

4. Электромагнитные поля

Источники ЭМ*Пскусственные источники*

Промышленной частоты (50 Гц):

- Естественные:
- Атмосферное электричество
- Радиоизлучение Солнца и галактик
- Электрическое и магнитное поля Земли

- лэп
- Высоковольтные установки пром. частоты

Радиочастот:

- радиостанции,
- антенны,
- установки индукционного нагрева,
- исследовательские установки,
- высокочастотные приборы и устройства, используемые в промышленности, в медицине и в быту.

Электростатического поля и электромагнитных излучений в широком диапазоне:

- ПЭВМ
- ВДТ на лучевых трубках

4. Электромагнитные поля

Действие электромагнитных полей от техногенных источников на организм человека

Степень воздействия ЭМП на человека зависит от:

- частоты,
- напряженности электрического и магнитного полей,
- интенсивности потока энергии,
- локализации излучения
- индивидуальных особенностей организма.

Возможные нарушения в организме человека:

- Нарушение функционального состояния нервной системы
- Нарушение функционального состояния сердечнососудистой системы

Нормирование электромагнитных

- полей
 1. СанПиН 2.2.4.3359-2016 «Санитарноэпидемиологические требования к физическим факторам на рабочих местах»
- ГОСТ ССБТ 12.1.002—84 Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах
- 3. ГОСТ ССБТ 12.1.006—84— Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля
- 4. ГОСТ ССБТ 12.1.045-84 Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля

Н**ор**мирование электромагнитных полей

электростатическое поле

• Допустимая напряженность поля на рабочих местах

$$E=\frac{60}{\sqrt{t}}$$

Епду - предельное значение напряженности поля, при которой допускается работать

- **в течение часа** *Епду* = 60 кВ/м.
- в течение рабочей смены (без специальных мер защиты) *Епду* = 20 кВ/м.

Допустимое времени работы в электростатическом поле без защитных мер в зависимости от фактической ой напряженности

$$T_{\text{доп}} = \left(\frac{E_{\text{ПДУ}}}{E_{\text{факт}}}\right)^2$$

Нормирование электромагнитных полей

промышпенной частоты

Допускается пребывание персонала без специальных средств защиты в течение всего рабочего дня в электрическом поле напряженностью *до 5 кВ/м*.

В интервале свыше 5 до 20 кВ/м включительно допустимое время пребывания определяется по формуле

$$T = \frac{50}{F} - 2$$

При напряженности поля свыше 20 до 25 кВ/м время пребывания персонала в поле не должно превышать 10

MIALL

внутри **жилых зданий** $E_{\Pi J Y} = 0,5 \text{ кB/м},$ на **территории зоны жилой застройки** $E_{\Pi J Y} = 1 \text{ кB/м}.$

4. Электроржирование электромагнитных полей постоянных магнитных полей и магнитных полей постоянных полей промышленной

Для **постоянных магнитных полей** в течение рабочей смены при работе с магнитными установками и магнитными материалами $H_{\Pi\Pi Y}$ = 8 кA/м

Для магнитных полей промышленной частоты нормируется предельно допустимая напряженность поля $H_{\Pi\Pi}$ в зависимости от характера воздействия (непрерывного или прерывистого), общего времени T воздействия в течение рабочего дня.

поля

Методы и средства защиты от воздействия ЭМП

- 1. Защита временем
- 2. Защита расстоянием
- 3. Уменьшение мощности излучения
- 4. Уменьшение излучения в источнике
- 5. Экранирование (*отражающие и поглощающие экраны*)
- 6. Рациональное размещение оборудования

- 5. Инфракрасное излучение
- **Тепловое излучение** перенос теплоты в виде электромагнитных волн с двойным взаимным превращением тепловой энергии в лучистую и обратно.
- Влияние теплового излучения от технологического оборудования на персонал называю *тепловым облучением*.

5. Инфракрасное

излучение

чэл, спектра	-	•	тика различны
	источник	1	
Источники излучения	Температура	Диапазон	Спектр
	излучающей	длин	
	поверхности, °С	волн,	
		МКМ	
Паропроводы, сушила,	До 500	3,79,3	Длинные и
низкотемпературные			инфракрасные лучи
печи			
Открытые проемы	5001300	1,93,7	Преимущественно
нагревательных печей,			длинные
открытое пламя,			лучи, слабое видимое
нагретые слитки,			излучение
заготовки,			
, 			

расплавленный чугун, бронза Инфракрасные 1,2.1,9 Расплавленная 1300..1800 сталь, открытые и видимые лучи проемы плавильных печей 2000...4000 Инфракрасные, Дуговые 0,8... 1,2 печи,

5. Инфракрасное излучение

Действие теплового облучения на организм

Факторы **1000 Техно**вия теплового облучения на организм человека:

- интенсивность и продолжительность облучения,
- площадь облученной поверхности организма,
- спектр излучения,
- углом падения лучистой энергии,
- температурой и скоростью движения воздуха,
- категорией выполняемой работы
- защитными свойствами спецодежды

Классификация инфракрасных излучений по характеру воздействия на организм человека

- коротковолновые лучи с длиной волны0,76...1,5 мкм глубоко проникает в ткани и разогревает их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделение, а при длительном облучении тепловой удар.
- длинноволновые с длиной волны более 1,5 мкм глубоко в ткани не проникают и поглощаются в основном в эпидермисе кожи. Они могут вызвать ожог кожи и глаз.

5. Инфракрасное излучение

Нормирование теплового излучения

- интенсивность теплового облучения E, Bт/м2 - мощность лучистого потока, приходящегося на единицу облучаемой площади.
- экспозиционная доза (ДОЭ), Вт×ч

$$ДОЭ = E \times S \times T$$

Доля (%) каждого участка тела при определении облучаемой поверхности тела

- голова и шея 9,
- грудь и живот 16,
 - спина 18,
 - руки 18,
 - ноги 39

5. Инфракрасное излучение

Классы условий труда по тепловом у облучению для производственных помещений

оолучению для производственных помещении						
Показатель	Класс условий труда					
	допусти	вредный			Опасный	
	МЫЙ					(экстрем
						альный)
	2	3.1	3.2	3.3	3.4	4
Интенсивность,	140	1500	2000	2500	2800	>2800
В т/м 2						
Экспозиционна	500	1500	2600	3800	4800	>4800
Я						
лоза. Втхч						

При этом облучению не должно подвергаться более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты , в том числе средств защиты лица и глаз. С условием, обязательной регламентацией продолжительности непрерывного облучения и пауз

5. Инфракрасное излучение

Методы и средства защиты от тепловых излучений

- 1. теплоизоляция нагретых поверхностей,
- 2. экранирование тепловых излучений*,*
- 3. применение воздушного душирования
- 4. применение защитной одежды,
- организация рационального отдыха в период работы

УФ-излучение – это электромагнитное излучение оптического диапазона с длиной волны λ = 400-100 нм и частотой 10^{13} - 10^{16} Гц.

Области УФИ

- 1. $A \lambda = 400-320$ нм (длинноволновое ближнее);
- В λ = 320-280 нм (средневолновое загарная радиация);
- 3. $C \lambda = 280-200$ нм (коротковолновое бактерицидная радиация).

Источники УФ-излучения

- солнце,
- любой материал, нагретый до температуры 2500 К, газозарядные,
- флуоресцентные лампы,
- источники температурного (теплового) излучения, эксимерные лазеры.

Действие УФИ на организм человека

- УФИ области А слабое биологическое действие, вызывающим преимущественно флуоресценцию.
- УФИ области В вызывает основные изменения в коже (загарное и антирахитическое действие), крови, нервной системе, кровообращении и других органах.
- УФИ области С обладает бактерицидным действием, вызывают коагуляцию белков

Нормирование интенсивности ультрафиолетового излучения

- СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах»
- МУ 5046-89 Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников ультрафиолетового излучения);
- Р 3.5.1904-04 Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях.;
- МУ 2.3.975-00 Использование ультрафиолетового бактерицидного излучения для обеззараживания воздушной среды помещений организаций пищевой промышленности, общественного питания и торговли продовольственными товарами. Методические указания.

6. УФИ

В Методических указаниях МУ № 5046-89 наряду с перечнем требований к облучательным установкам длительного и кратковременного действия, контролю за УФ-излучением, проектированию и эксплуатации УФ-оборудования установлены нормы УФ-облученности и дозы за сутки в эффективных и энергетических единицах. Параметры УФ-облученности и суточной дозы подразделяются на минимальные, максимальные и рекомендуемые. В качестве одного из требований к облучательным установкам регламентируется диапазон УФ-излучения от 280 до 400 нм. Максимальные уровни УФ-облученности не должны превышать:

- 45мВт/м² от люминесцентных ламп в рабочих помещениях промышленных и общественных зданий, в помещениях детских больниц и санаториев при продолжительности ежесуточного облучения 6-8 ч;
- 16,5 мВт/м² от облучательных установок длительного действия с осветительно-облучательными лампами независимо от времени облучения, вида помещения и возраста облучаемых;
- 7,2 мВт/м² для взрослых и 4,8 мВт/м² для детей от облучательных установок кратковременного действия (в фотариях).

Основные методы и средства защиты от УФ-излучения:

- защитная одежда с длинными рукавами и капюшоном;
- противосолнечные экраны;
- окраска помещений водными составами (меловым и известковым);
- очки со стеклами, содержащими оксид свинца.

7. Лазерное излучение

- Лазерное излучение (ЭМИ с частотами от 30×10^{11} до $1,5 \times 10^{15}$ Гц) генерируют оптические квантовые генераторы (ОКГ) лазеры.
- Лазерное излучение (ЛИ) это узкий нефокусированный или фокусированный световой поток, сосредоточенный в основном в видимой области длин волн, а также в инфракрасной и ультрафиолетовой.

Классификация лазеров:

- 1-й класс безопасные выходное излучение не опасно для глаз;
- 2-й класс малоопасные опасно для глаз прямое или зеркально отраженное излучение;
- 3-й класс среднеопасные опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи;
- 4-й класс высокоопасные опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

7. Лазерное излучение

Критерии при оценке степени опасности генерируемого лазерного излучения:

- величина мощности (энергии),
- длина волны,
- длительность импульса
- экспозиция облучения.

7. Лазерное излучение

Защитные мероприятия:

- экранирование ОКГ;
- применение телевизионных систем наблюдения за ходом процесса;
- использование дистанционного управления процессом;
- сведение к минимуму отражающих поверхностей оборудования и стенок.

При эксплуатации лазеров должен производиться периодический дозиметрический контроль (не реже одного раза в год).

СИ3:

- специальные противолазерные очки,
- фильтры,
- защищающие глаза оператора, щитки, маски,
- технологические халаты и перчатки.

8. Ионизирующие излучения

Ионизирующие излучения (ИИ) — излучения, взаимодействие которых со средой приводит к образованию ионов (электрически заряженных частиц) разных знаков из электрически нейтральных атомов и молекул.

Корпускулярные ИИ:

- *альфа (α)*-излучение поток ядер атомов гелия;
- бета (β)-излучение поток электронов, иногда позитронов («положительных электронов»);
- нейтронное (n) излучение

 поток нейтронов,
 возникающий в результате ряда ядерных реакций.

Электромагнитные ИИ:

- рентгеновское (v) излучение электромагнитные колебания с частотой $3 \times 10^{17}...3 \times 10^{21}$ Гц, возникающие при резком торможении электронов в веществе;
- гамма-излучение электромагнитные колебания с частотой 3×10²² Гц и более, возникающие при изменении энергетического состояния атомного ядра, при ядерных превращениях или аннигиляции («уничтожении») частиц.

8. Ионизирующие излучения

Биологическое действие ИИ

Соматические эффекты

- локальные лучевые повреждения;
- острая лучевая болезнь;
- хроническая лучевая болезнь;
- лейкозы;
- опухоли органов и клеток;
- сокращение продолжительности жизни

Генетические эффекты

• врожденные уродства —в результате мутаций и других нарушений в половых клеточных структурах, ведающих наследственностью.

Облучение источниками ИИ:

- Внутренние
- Внешние

8. Ионизирующие

излучений излучений

СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности НРБ-99/2009" Категории облучаемых лиц:

- категория А —
 профессиональные
 работники, работающие
 непосредственно с
 источниками ИИ;
- категория Б лица, которые не работают непосредственно с источниками ИИ, но по условиям проживания или размещения рабочих мест могут подвергаться промышленному облучению;
- третья категория остальное население.

8. Ионизирующие излучения

Основные пределы доз (ПД)

	Пределы доз		
Нормируемые величины	Персонал (группа А)	Население	
Эффективная доза	20 м3в в год в среднем	1 м3в в год в среднем	
	за любые	за любые	
	последовательные 5	последовательные 5	
	лет, но не более 50 м3в	лет, но не более 5 м3в в	
	в год	год	
Эквивалентная доза			
за год:			
в хрусталике глаза	150 мЗв	15.425	
коже	500 мЗв	15 M3B	
кистях и стопах	500 мЗв	50 мЗв	

Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1 /4 значений для персонала труппы А.

Принципы обеспечения радиационной безопасности

- принцип нормирования не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
- — принцип обоснования—запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения;
- принцип оптимизации поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

8. Ионизирующие излучения

Защита от ионизирующих излучений

- Уменьшить активность источника ИИ («защита количеством»).
- Использовать в качестве источника излучения нуклид (изотоп) с меньшей энергией («защита мягкостью излучения»),
- Уменьшить время облучения («защита временем»);
- Увеличить расстояние от источника излучения («защита расстоянием»).
- Экранирование («защита экранированием»).
- Защита от внутреннего облучения
- Различные профилактических мероприятий

СИЗ от ИИ:

- 1) изолирующие пластиковые пневмокостюмы с принудительной подачей воздуха в них;
- 2) специальная одежда хлопчатобумажная
- 3) респираторы и шланговые противогазы для защиты органов дыхания;
- 4) специальная обувь
- 5) резиновые перчатки и рукавицы из просвинцованной резины с гибкими нарукавниками для защиты рук;
- 6) пневмошлемы и шапочки (хлопчатобумажные, из просвинцованной резины) для защиты головы;
- 7) щитки из оргстекла для защиты лица;
- 8) очки для защиты глаз

 Освещение – это использование световой энергии солнца и искусственных источников света для обеспечения зрительного восприятия окружающего мира

Показатели освещения

		•	
количественные			
Наименование	Обозначение, определяющая	Определение	

формула, размерность

Световым

Ф (люмен, лм)

мощность лучистой энергии,

поток

воспринимаемая как свет, оцениваемая по действию на средний человеческий глаз.

Сила света

(кандела, кд)

пространственная плотность светового потока, заключённого в телесном угле Ω, который конической поверхностью ограничивает часть

Освещённость

люкс, лк)

Яркость

 $(кд/M^2)$ -

пространства. поверхностная плотность светового потока, отнесённая к площади S, на которую он распределяется. Величина освещённости задаётся в нормах. это отношение силы света, к проекции

светящейся поверхности на плоскость,

перпендикулярную направлению

Показатели освещения количественные

В интервале свыше 5 до 20 кВ/м включительно допустимое время пребывания определяется по формуле

$$T = \frac{50}{E} - 2$$

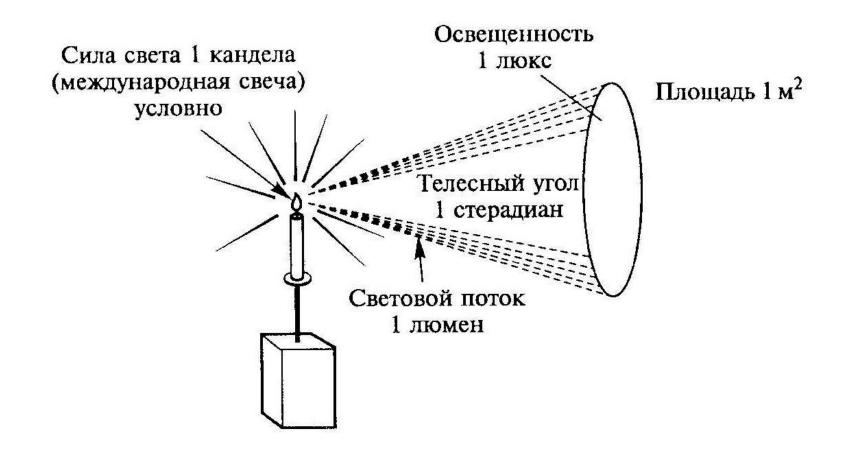


Схема зависимости световых величин

Показатели освещения

		.		
	качественные			
Наименование	Обозначение, определяющая формула, размерность	Определение		

видимость

коэффициент

Фон поверхность, непосредственно примыкающая к объекту различения, по отношению к которой он

рассматривается. = 0,2...0,4 - **средним** и при р < 0,2

При ρ > 0,4 фон считается светлым; при ρ - темным.

отношение абсолютной величины контраст объекта с фоном

разности между яркостью объекта L_o и

фона L_фк яркости фона. универсальная характеристика

качества освещения, которая

воспринимать объект.

характеризует способность глаза

критерий оценки относительной

По принципу организации производственное освещение

- Естественное
- Искусственное
- Совмещенное

Естественное освещение по конструктивному исполнению

- Боковое осуществляется через световые проемы в наружных стенах
- Верхнее через фонари, световые проемы в стенах в местах перепада высот здания
- Комбинированное сочетание верхнего и бокового освещения

Искусственное освещение по конструктивному исполнению

- Общее освещение общее равномерное и общее локализированное
- Комбинированное освещение- к общему освещению добавляется местное

По функциональному назначению искусственное освещение бывает

- Рабочее
- Аварийное
- Охранное
- Дежурное

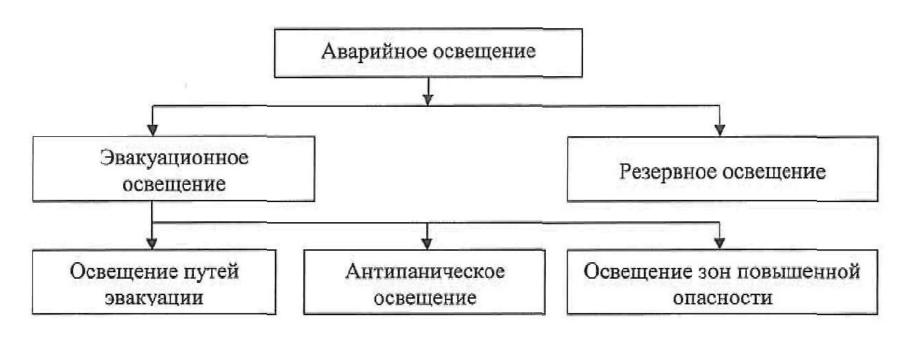


Рисунок 7.1 — Виды аварийного освещения

Источники света

Основные характеристики

- 1. Рабочее напряжение U (B) и электрическая мощность N(BT).
- 2. Световой поток лампы Ф (лм).
- 3. Характеристика спектра излучения.
- 4. Срок службы лампы t, час.
- 5. Конструктивные параметры (форма колбы лампы, тела накала; наличие и состав газа, заполняющего колбу).
- 6. Световая отдача или экономичность ϕ (лм/Вт), то есть отношение светового потока к мощности лампы.

$$\varphi = \frac{\Phi}{N}$$

Источники света (продолжение 2)

2. Галогенные лампы накаливания

Наличие в колбе паров йода повышает температуру накала спирали; образующиеся пары вольфрама соединяются с йодом и вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити.

Преимущества галогенных ламп: более высокая, чем у ламп накаливания световая отдача (до 40 лм/Вт), срок службы 3000ч, спектр излучения близок к естественному.

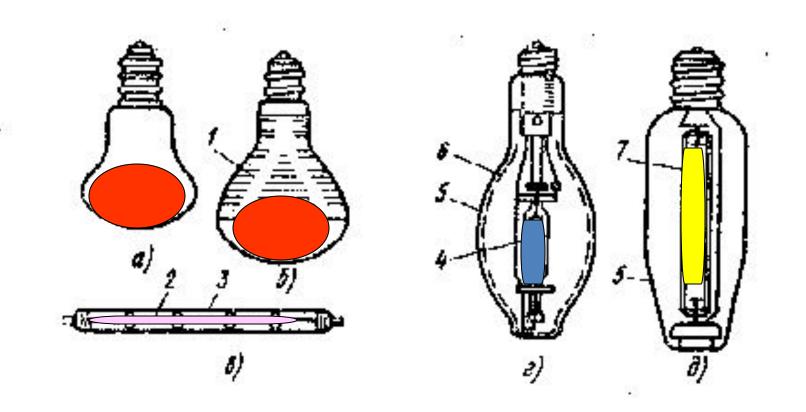
3. Газоразрядные лампы

Излучают свет в результате электрических разрядов в парах газов. Слой люминофора преобразует электрические разряды в видимый свет. Различают газоразрядные лампы низкого (люминесцентные) и высокого давления.

Люминесцентные лампы (ЛЛ)

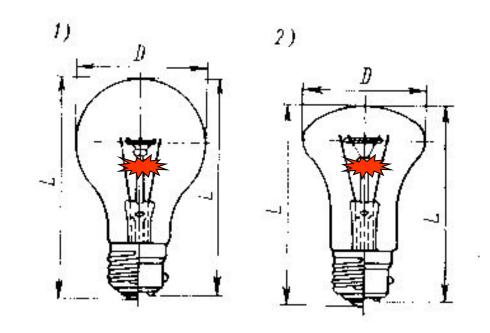
Марки ламп: ЛБ - лампа белого света, **ЛД** - лампа дневного света, **ЛТБ** - лампа тёпло-белого света, **ЛХБ** - лампа холодного света, **ЛДЦ** - лампа с улучшенной цветопередачей.

<u>Преимущества ЛЛ:</u> значительная световая отдача (40-80 лм/Вт), большой срок службы (8000ч), спектр излучения близок к естественному свету.


<u>Недостатки ЛЛ:</u> большие габариты, чувствительность к низкой температуре, пульсация светового потока, высокая стоимость.

Газоразрядные лампы высокого давления

Марки ламп: ДРЛ - дуговая ртутная люминесцентная, ДКсТ - дуговая ксеноновая трубчатая, ДНаТ - дуговая натриевая трубчатая.


Преимущества: эти лампы работают при любой температуре.

Применение: для открытых площадок и в высоких помещениях.

Некоторые типы ламп (масштабы разные)

а - криптоновая; б - зеркальная; в - галогенная; г - ДРЛ; д - ДНаТ; 1 - отражающий слой; 2 - нить накала; 3 - кварцевая колба; 4 - ртутная кварцевая лампа; 5 - внешняя стеклянная колба; 6 - люминофор; 7 - горелка, заполненная парами натрия.

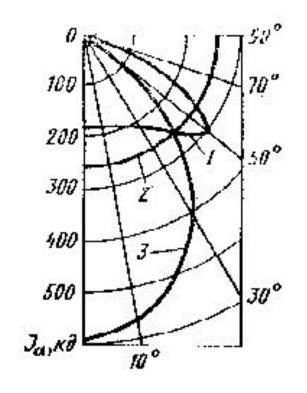
Лампы накаливания общего назначения

- 1. **НБ 220 100** накаливания биспиральная, световой поток 1240 лм, световая отдача 12,4 лм/Вт;
- 2. **НБК 220 -100** накаливания биспиральная криптоновая, световой поток 1380 лм; световая отдача 13,8 лм/Вт.

Осветительные приборы

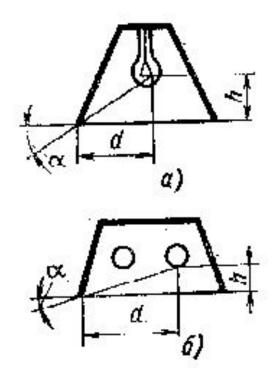
Осветительные приборы включают источник света и арматуру. Их делят на светильники и прожекторы.

Характеристики светильников: 1 - кривые распределения силы света; 2 - защитный угол (от ослепления), 3 - КПД светильника, как отношение светового потока светильника к световому потоку источника света.


По распределению светового потока светильники делят:

- прямого света;
- преимущественно
- прямого света;
- рассеянного света;
- отражённого света.

По исполнению светильники


делят:

- открытые;
- защищённые;
- брызгозащищённые;
- взрывозащищённые и др.

- 1 широкая;
- 2 равномерная;
- 3 глубокая.

Защитный угол светильника

а - с лампой накаливания

б - с люминесцентными лампой.

Нормирование искусственного освещения

- СП 52.13330.2016 Естественное и искусственное освещение.
- Нормируемые параметры искусственного освещения:
- Освещенность рабочей поверхности
- Показатель ослепленности
- Коэффициент пульсации освещенности