
Сопротивление материалов «Вопрос 1» Металлический тип химической связи и основные свойства металлов

- Металлическую связь образуют металлы, атомы которых на внешних оболочках имеют мало валентных электронов.
- Во всех узлах кристаллической решетки расположены положительные ионы металла. Между ними беспорядочно, движутся валентные электроны, отщепившиеся от атомов при образовании ионов.
- Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решетка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть.
- Эти валентные электроны, осуществляющие металлическую связь, обобществлены настолько, что могут перемещаться по всему металлическому кристаллу и обеспечивают высокую электропроводность металла.

Ион – частица, образующаяся в результате отдачи или присоединения электрона.

В химии *валентными* электронами называют электроны, находящиеся на внешней (валентной) оболочке атома.

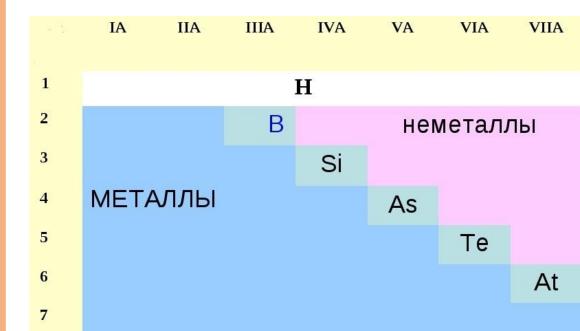
Физические свойства:

- Цвет
- Теплопроводность\Температу ра плавления
- Электропроводность
- Магнитная восприимчивость
- Плотность

Химические

свойства:

- Растворимость
- Окисляемость способность образовывать оксиды (мет + O₂)
- Коррозийная стойкость


Механические свойства:

- Прочность способность материала сопротивляться внешним нагрузкам без образований деформации.
- Жесткость способность материала сопротивляться внешним нагрузкам без образования перемещений.
- Упругость способность принимать первоначальную форму, после снятия нагрузки
- Пластичность способность изменять свои размеры и форму без деформации под действием нагрузки

Сопротивление материалов «Вопрос 2» Металлы в периодической системе элементов. Кристаллическое строение металлов. Типы кристаллический решеток медаллов

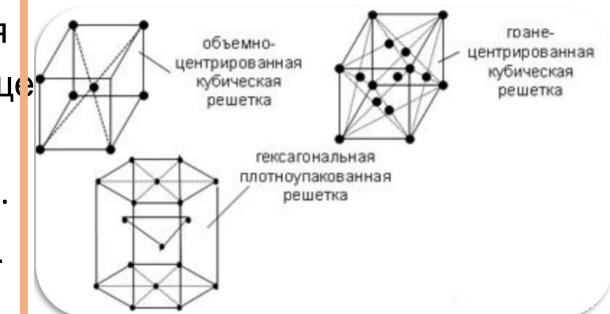
	I 1	ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА					VII	VIII
1	Н Водород 1,00794	11	Д. И . IV	IENZEN	V	VI	(H)	2 4,00260 Не ГЕЛИЙ
2	Li 3 литий 6,94,	Ве 9,01218 БЕРИЛЛИЙ	5 10,81 B 50P	6 12.011 УГЛЕРОД	7 14,0067 A30T	8 15,9994 КИСЛОРОД	9 18,998403 PTOP	10 Ne 20,17, HEOH
3	Na 11 HATPNÑ 22,98977	Mg 12 MACHHŮ 24,305	13 26,98154 АЛЮМИНИЙ	14 Si 28,085, KPEMHNÑ	15 30.97376 Ρ Φ0CΦ0Ρ	16 32,06 S CEPA	17 35.453 С1 ХЛОР	18 Ar 39,94a APFOH
4	КАЛИЙ 19 19 19 19 39,098,	Са 20 КАЛЬЦИЙ 40,08	Sc 21 СКАНДИЙ	Ti 22 47,90	V 23 50,9415 ВАНАДИЙ	Cr 24 51,996	М ń 25 марганец	Fe 26 55,84,
	²⁹ Cu медь	30 Zn 65,38 UNHK	31 69,72 Ga ГАЛЛИЙ	32 72,5, Ge FEPMAHNÑ	33 74,9216 АS МЫШЬЯК	34 78,9 ₆ Se СЕЛЕН	35 79,904 Br 5POM	36 83,80 Kr KPMNTOH
5	Rb 85,467.	Sr 38 87,62 СТРОНЦИЙ	Y 39 NTTPNÑ 88,9059	Zr 40 40 40 40 40 40 40	Nb 41 НИОБИЙ 92,9064	Мо 42 95,94 МОЛИБДЕН	Тс 98,9062 ТЕХНЕЦИЙ	Ru 101,0,
	47 107,8682 А g СЕРЕБРО	48 Cd 112,41 Кадин й	49 114,82 In ИНДИЙ	50 118,6, ОЛОВО	51 Sb 121.7s CYPLMA	52 127,6。 Те ТЕЛЛУР	53 126,9045 ИОД	54 131,30 Xe KCEHOH
6	Cs 132,9054 UE3NÑ	Ва 56 БАРИЙ	La ⁵⁷ _*Lu ⁷¹	Нf 72 178,4,	Та 73 180,947,	V 74 ВОЛЬФРАМ 183.8,	Re 75 186,207	Os 76 0CMHЙ
	⁷⁹ Au ^{196,9665} ЗОЛОТО	80 Hg	81 204,3, Т1 ТАЛЛИЙ	82 207,2 Pb CBMHEU	83 208,9804 Bi BHCMYT	84 [209] Ро ПОЛОНИЙ	85 [210] At ACTAT	86 [222] Rn РАДОН
7	Fr 87 ФРАНЦИЙ	Ra 88 РАДИЙ	Ac ⁸⁹ (Lr) ⁰³ **	Ku 104 Курчатовий	Ns 105 Нильсборий	— S-элементы — d-элементы	<mark>■</mark> — р-элементы ■ — f-элементы	

Металлы – хим. элементы, характеризующиеся способностью отдавать внешние электроны

Типы кристаллических решеток:

• Объемно-центрированная – это куб, в узлах которого 8 атомов, еще один располагается в центре свободного внутреннего пространства ячейки.

Высокая степень ковкости и пластичности, твердость и прочность.


• *Гранецентрированная* – это куб из 14 атомов: 8 формируют узлы решетки, а 6 расположены по одному на каждой грани.

Блеск, легкость, прочность, ковкость. устойчивость к коррозии

• Гексагональная – это шестигранная призма, в узлах которой 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства.

Высокая прочность и серебристый

блеск

